This puzzle is a variation on a past Putnam problem. Consider a triangle ABC and let:
- Y be the midpoint of BC,
- X be the common intersection of the altitudes,
- Z the foot of the altitude from A,
- and finally O the center of the circumscribed circle.

Suppose that $OXZY$ forms a rectangle.

Let $|OX| = 1$ and $r = \frac{|OY|}{|OX|} = |OY|$. Find

$$\lim_{r \to 0} \frac{\text{area}(\triangle ABC)}{\text{area}(\square OXZY)}$$

[Hint: consider setting up coordinates such that O is the origin, and X is the point $(1, 0)$, and Y is $(0, r)$.]