Do all five problems.

1. Let G be a group and let $\text{Aut}(G)$ denote the group of automorphisms of G. Let

$$\text{Inn}(G) = \{ \phi \in \text{Aut}(G) \mid \exists h \in G \text{ such that } \phi(g) = h^{-1}gh \ \forall g \in G \}$$

be the subgroup of inner automorphisms. Show that $\text{Inn}(G) \triangleleft \text{Aut}(G)$.

2. Prove the Third Isomorphism Theorem: For any group G with normal subgroups $H \triangleleft G$ and $K \triangleleft G$, where $H \subseteq K$ we have:

(a) $K/H \triangleleft G/H$

(b) $(G/H)/(K/H) \cong G/K$

3. Let R, S denote commutative rings with unities. Let $\phi : R \to S$ be a homomorphism of rings. Prove that if $J \subset S$ is a prime ideal then $\phi^{-1}(J)$ is either equal to R or a prime ideal of R.

4. Let V be the vector space of upper triangular 2×2 matrices over \mathbb{R}. Let

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

(a) Show that (A, B, C) is a basis of V.

(b) Define an inner product on V by $\langle X, Y \rangle = \text{tr}(XY^T)$. Find the orthogonal projection of $\begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$ onto the subspace spanned by A and B. (Here $\text{tr}(M)$ denotes the trace of the matrix M.)

5. Let $T : V \to V$ be a linear map on an n-dimensional vector space V.

(a) Suppose v_1, v_2, \ldots, v_n are non-zero eigenvectors of T, associated with distinct eigenvalues. Show that $\{v_1, v_2, \ldots, v_n\}$ is linearly independent. Conclude that this forms a basis.

(b) Suppose each v_i is also an eigenvector of $S : V \to V$ (with not necessarily the same eigenvalues). Show that $ST = TS$.