Do all five problems.

1. Let G be any group.
 (a) Let $\phi : G \to G$ be defined by $\phi(g) = g^2$ for all $g \in G$. Prove that ϕ is a homomorphism if and only if G is abelian.
 (b) If G is abelian and finite, show that ϕ is an automorphism if and only if G has odd order.

2. Let G be a group and let $S = \{xyx^{-1}y^{-1} | x, y \in G\}$. Prove: If H is a subgroup of G and $S \subseteq H$, then H is a normal subgroup of G.

3. Prove that in an integral domain D every prime element is an irreducible.

4. Find necessary and sufficient conditions on $\alpha, \beta, \gamma \in \mathbb{R}$ such that the matrix
 \[
 \begin{pmatrix}
 1 & \alpha & \beta \\
 0 & 0 & \gamma \\
 0 & 0 & 1
 \end{pmatrix}
 \]
 is diagonalizable over \mathbb{R}.

5. Let $\mathcal{M}_n(\mathbb{R})$ be the vector space of $n \times n$ matrices with entries in \mathbb{R} and let \mathcal{S} and \mathcal{Z} denote the set of real $n \times n$ symmetric and skew-symmetric matrices, respectively (recall that an $n \times n$ matrix A is skew-symmetric if $A^T = -A$).
 (a) Show that $\dim(\mathcal{S}) = \frac{n(n+1)}{2}$. A brief justification is sufficient.
 (b) Let $T : \mathcal{M}_n(\mathbb{R}) \to \mathcal{M}_n(\mathbb{R})$ be the linear transformation defined by
 \[
 T(A) = \frac{A + A^T}{2}
 \]
 for all $A \in \mathcal{M}_n(\mathbb{R})$. Prove that $\ker(T) = \mathcal{Z}$ and $\text{im}(T) = \mathcal{S}$.
 (c) Compute $\dim(\mathcal{Z})$.