Econ 522 Midterm (Winter 2016)

1. Consider the time series

\[y_t = \delta + y_{t-1} + w_t, \]

with initial condition \(y_0 = 0 \) and \(w_t \) is white noise with variance \(\sigma^2 \). Is \(\{ y_t \} \) stationary? What is the mean function, \(\mu_y(t) \)? What is the autocovariance function, \(\gamma_y(s,t) \)?

Solution:
Write

\[y_t = t\delta + \sum_{i=1}^{t} w_i. \]

Then,

\[\mu_y(t) = E(y_t) = t\delta \]

and

\[\gamma_y(s,t) = \text{cov}(y_s, y_t) = E \left(\sum_{i=1}^{s} w_i \right) \left(\sum_{j=1}^{t} w_j \right) = \min\{s,t\} \sigma^2. \]

Not stationary since \(\mu_y \) is a function of \(t \).
2. Consider the time series

\[x_t = \phi x_{t-1} + w_t \]
\[y_t = \alpha + w_t + u_t + \theta u_{t-1} \]

where \(|\phi| < 1\) and \(\{w_t\}\) and \(\{u_t\}\) are independent white noise processes with variance \(\sigma_w^2\) and \(\sigma_u^2\) respectively.

(a) What is the autocovariance of \(\{x_t\}\), \(\gamma_x(h)\)?
(b) What is the autocovariance of \(\{y_t\}\), \(\gamma_y(h)\)?
(c) What is the crosscorrelation of \(\{x_t\}\) and \(\{y_t\}\), \(\rho_{xy}(h)\)?

Solution:

(a) \(\gamma_x = \phi^h \sigma_w^2 / (1 - \phi^2)\).

(b) \(\gamma_y = \begin{cases} \sigma_w^2 + (1 + \theta^2) \sigma_u^2 & h = 0 \\ \theta \sigma_u^2 & h = \pm 1 \\ 0 & \text{else} \end{cases}\)

(c) \(\gamma_{xy}(h) = E[x_{t+h}y_t] = \text{cov} \left(\sum_{i=0}^{\infty} \phi^i w_{t+h-i}, \alpha + w_t + u_t + \theta u_{t-1} \right) = \phi^h \sigma_w^2.\)
3. Consider the model

\[y_t = \alpha + 0.6y_{t-1} + 0.7y_{t-2} + w_t + 2w_{t-1}, \]

where \(w_t \) is white noise with variance \(\sigma_w^2 \). Is this model causal? Is it invertible? (Why?)

Solution:

The AR polynomial, \(\phi(z) = 1 - 0.6z - 0.7z^2 \), has roots \(z = (0.841, -1.698) \). One is inside and one is outside the unit circle, so the model is noncasual.

The MA polynomial, \(\theta(z) = 1 + 2z \) has root \(z = -0.5 \), which is inside the unit circle, so noninvertible.
4. [3_01.tex] Consider the model

\[y_t = \phi y_{t-1} + w_t + \theta w_{t-1}, \]

where \(w_t \) is white noise with variance \(\sigma^2 \).

(a) What conditions on \(\phi \) and \(\theta \) imply that this model is stationary and causal?

(b) Write this model in form \(y_t = \sum_{i=0}^{\infty} \psi_i w_{t-i} \). (Show how to compute \(\psi_i \) \((i = 1, 2, \ldots) \) in terms of \(\phi \) and \(\theta \).)

Solution:

(a) Causal iff \(|\phi| < 1 \). Invertible iff \(|\theta| < 1 \).

(b) Given

\[\phi(B)y_t = \theta(B)w_t \]

(1)

we search \(\psi(B) = 1 + \psi_1 B + \psi_2 B^2 + \ldots \) such that

\[y_t = \psi(B)w_t. \]

(2)

Substituting (2) into (1), we get

\[\phi(B)\psi(B)w_t = \theta(B)w_t, \]

which implies

\[\phi(z)\psi(z) = \theta(z). \]

Writing this out explicitly, we get

\[(1 - \phi z)(1 + \psi_1 z + \psi_2 z^2 + \psi_3 z^3 + \ldots) = 1 + \theta z. \]

Matching coefficients we get,

\[\psi_1 - \phi = \theta \]
\[\psi_2 - \phi\psi_1 = 0 \]
\[\psi_3 - \phi\psi_2 = 0 \]
\[\psi_4 - \phi\psi_3 = 0 \]
\[\vdots \]
\[\psi_n - \phi\psi_{n-1} = 0 \]
\[\vdots \]

Thus, the coefficients satisfy the difference equation \(\psi_n - \phi\psi_{n-1} = 0 \) with initial condition \(\psi_1 = \theta + \phi \).