PROBLEM 16.131

A driver starts his car with the door on the passenger’s side wide open ($\theta = 0$). The 80-lb door has a centroidal radius of gyration $k = 12.5$ in., and its mass center is located at a distance $r = 22$ in. from its vertical axis of rotation. Knowing that the driver maintains a constant acceleration of 6 ft/s^2, determine the angular velocity of the door as it slams shut ($\theta = 90^\circ$).

PROBLEM 16.141

At the instant shown, the 6 m long, uniform 50-kg pole ABC has an angular velocity of 1 rad/s counterclockwise and Point C is sliding to the right. A 500 N horizontal force P acts at B. Knowing the coefficient of kinetic friction between the pole and the ground is 0.3, determine at this instant (a) the acceleration of the center of gravity, (b) the normal force between the pole and the ground.

PROBLEM 16.147*

The 6-lb cylinder B and the 4-lb wedge A are held at rest in the position shown by cord C. Assuming that the cylinder rolls without sliding on the wedge and neglecting friction between the wedge and the ground, determine, immediately after cord C has been cut, (a) the acceleration of the wedge, (b) the angular acceleration of the cylinder.