Math 142 (Camp)

Worksheet: Integration by Parts

\[\int u \, dv = uv - \int v \, du \]

Split your original integrand into two parts \(u \) and \(dv \) such that

- the antiderivative \(v = \int dv \) is easy to find, and
- the new integral, \(\int v \, du \), is easier to determine than the original integral, \(\int u \, dv \).

Problems:

1. Use integration by parts to solve the following integrals

 (a) \[\int x \ln x \, dx \]

 \[\text{Follow the hint above.} \]

 \[\text{Choose } u = \ln x \quad \Rightarrow \quad du = \frac{1}{x} \, dx \]

 \[\text{dv} = x \, dx \quad \Rightarrow \quad v = \frac{1}{2} x^2 \ln x - \frac{1}{2} \int x \, dx \]

 \[\Rightarrow \int x \ln x \, dx = \frac{1}{2} x^2 \ln x - \frac{1}{4} x^2 + C \]

 Let's try the problem again, but let \(u = x \quad \Rightarrow \quad \]

 \[du = dx \quad \Rightarrow \quad v = \int \ln x \, dx = \frac{x}{2} \ln x - \frac{x}{2} \quad \text{goal} \]

 (b) \[\int x^2 e^{-x} \, dx \]

 Hint: sometimes you need to use IBP more than once.

 \[\text{Let's try } u = x^2 \quad \Rightarrow \quad \]

 \[du = 2x \, dx \quad \Rightarrow \quad v = -e^{-x} \quad (= \int e^{-x} \, dx) \]

 \[\Rightarrow \int x^2 e^{-x} \, dx \]

 \[\Rightarrow \int x e^{-x} \, dx \quad \text{(IBP again)} \]

 \[\Rightarrow \int e^{-x} \, dx \quad \text{let } u = x \quad \Rightarrow \quad \]

 \[du = dx \quad \Rightarrow \quad v = -e^{-x} \]

 \[\Rightarrow \int x e^{-x} \, dx = -xe^{-x} + \int e^{-x} \, dx \]

 \[= -xe^{-x} - e^{-x} + C \]

 \[= xe^{-x} - e^{-x} + C \]

 \[\text{Use in previous work} \]

 \[\text{Note: still differentials.} \]

 \[\text{We obtained the first polynomial. If we had let } u = e^{-x}, \text{ we would have gotten the \textit{final} result, and ended up back at the beginning!} \]
2. We're going to use integration by parts to determine the integral

\[I = \int e^x \sin x \, dx. \]

(a) Perform integration by parts once, letting \(u = \sin x \) and \(dv = e^x \, dx \).

\[\Rightarrow I = \int e^x \sin x \, dx = e^x \sin x - \int e^x \cos x \, dx \]

\[\quad \text{with} \quad \begin{align*}
 u &= \sin x & dv &= e^x \, dx \\
 \frac{du}{dx} &= \cos x & v &= e^x
\end{align*} \]

\[= e^x \sin x - \int e^x \cos x \, dx \]

(b) Perform integration by parts again on the resulting new integral, letting \(u = \cos x \) and keeping \(dv = e^x \, dx \). (Don't reverse them in the second IBP, you'll just end up undoing the first IBP.)

\[\int e^x \cos x \, dx = e^x \cos x + \int e^x \sin x \, dx \]

\[\quad \text{with} \quad \begin{align*}
 u &= \cos x & dv &= e^x \, dx \\
 \frac{du}{dx} &= -\sin x & v &= e^x
\end{align*} \]

\[\Rightarrow \quad \int e^x \sin x \, dx = e^x \sin x - e^x \cos x - \int e^x \sin x \, dx \]

\[\Rightarrow \quad 2I = e^x \sin x - e^x \cos x \]

\[\Rightarrow \quad I = \frac{1}{2} \left(e^x \sin x - e^x \cos x \right) + C \]

(c) Notice that the original integral, \(I \), has reappeared. You should have an equation which looks like \(I = h(x) + cI \) for some function \(h(x) \) and some constant, \(c \). Solve this for equation for \(I \), our desired integral. (Don't forget the constant of integration.)

\[\Rightarrow \quad I = h(x) + cI \]

\[\Rightarrow \quad 2I = e^x \sin x - e^x \cos x \]

\[\Rightarrow \quad I = \frac{1}{2} \left(e^x \sin x - e^x \cos x \right) + C \]

\[\text{with} \quad \begin{align*}
 h(x) &= e^x \sin x - e^x \cos x \\
 c &= -1
\end{align*} \]

We've done many problems as long as \(h(x) \) is a \(C \), \(c \neq 1 \).

(d) Confirm your result by differentiating it.

You should be able to show that \(\frac{dI}{dx} = e^x \sin x \) (original integral)

\[\frac{d}{dx} \left[\frac{1}{2} (e^x \sin x - e^x \cos x) \right] + \frac{1}{2} \frac{d}{dx} \left[e^x (\sin x - \cos x) \right] + C = \frac{1}{2} e^x (\sin x + \cos x) + e^x (\sin x - \cos x) \]

\[= \frac{1}{2} e^x (2 \sin x + 2 \cos x) = \frac{1}{2} e^x (2 \sin x + 2 \cos x) \]

\[= e^x \sin x \]

You can confirm the previous 2 integrals in a similar way.

\[\frac{d}{dx} \left[\frac{1}{2} x^2 \ln x - \frac{1}{4} x^2 + C \right] = \frac{1}{2} x \cdot \frac{1}{x} + \frac{1}{2} (2x) \ln x - \frac{1}{2} x + 0 = \frac{1}{2} x - \frac{1}{2} x = \frac{1}{2} x = x \ln x \]