32) \[I = \int_0^1 \int_0^{1-x} \int_0^{-x^2} f(x, y, z) \, dz \, dy \, dx \]

a) \(D \) in projection is \(x \)-\(z \) plane

\[0 \leq x \leq 1 \quad \text{outer} \]
\[0 \leq y \leq 1-x^2 \quad \text{middle} \quad \text{inner} \]
\[0 \leq z \leq 1-x^2 \]

\[D: \{ (x,y,z) \mid 0 \leq x \leq 1, \ 0 \leq z \leq 1-x^2 \} \]

- Keep \(y \) as innermost integral, exchange order in \(D \) to get

\[D: \{ \begin{cases} 0 \leq z \leq 1 \\ 0 \leq x \leq \sqrt{1-z} \\ 0 \leq y \leq 1-x \end{cases} \} \]

\[I = \int_0^1 \int_0^{\sqrt{1-z}} \int_0^{1-x} f(x, y, z) \, dy \, dz \, dx \]

b) \(D \) as projection to \(x \)-\(y \) plane

- In original, exchange order of \(y \) \& \(z \) integrals, i.e., do \(f \) \(x \)-\(y \), \(x \)-\(z \)

\[\Rightarrow \{ \begin{cases} 0 \leq x \leq 1 \\ 0 \leq y \leq 1-x \quad \text{inner} \\ 0 \leq z \leq 1-x^2 \quad \text{outer} \end{cases} \} \]

\[I = \int_0^1 \int_0^{1-x^2} \int_0^{1-x} f(x, y, z) \, dz \, dy \, dx \]

(Note: \(x \) \& \(z \) outer, bounds of \(y \) \& \(z \) are independent of each other \(\Rightarrow \) we can simply exchange their order)

- Keeping \(z \) as innermost, exchange order of \(x \)-\(y \) in \(D \)

\[0 \leq y \leq 1 \]
\[0 \leq x \leq 1-y \]
\[0 \leq z \leq 1-x^2 \]

\[I = \int_0^1 \int_0^{1-y} \int_0^{1-x^2} f(x, y, z) \, dz \, dx \, dy \]
We've done both possibilities for \(y \) as a constant and for \(z \) as a constant in \(y \).

(i.e., \(y \) is projection into \(x-y \) and \(x-y \) planes, respectively.)

Now, we'll try to projecting into \(y-z \) plane to \(0 \), i.e. \(x \) as invariant.

\[D: \begin{aligned}
0 &\leq z \\
0 &\leq x \\
0 &\leq z = 1 - y
\end{aligned} \]

and lower bound for \(x \) is \(x = 0 \).

Unfortunately, the upper bound for \(x \) is a piecewise function.

\[x \begin{aligned}
0 &\leq x \leq \sqrt{y} \\
0 &\leq x \leq 1 - y
\end{aligned} \]

We need to find the curve in the \(y-z \) plane which separates these regions.

It's the projection of the intersection of \(z = 1 - x^2 \) and \(y = 1 - x \) into the \(y-z \) plane.

Intersection occurs when \(z = 1 - x^2 \) holds true

\[y = 1 - x \]

\[y = 1 - x \Rightarrow x = 1 - y \]

\[z = 1 - (1-y)^2 \Rightarrow z = 2y - y^2 \]

so \(D \) is the unit square in \(y-z \) plane divided along \(z = 2y - y^2 \).

\[\left\{ \begin{array}{c}
0 \leq y \leq 1 \\
0 \leq z \leq 2y - y^2 \\
0 \leq x \leq 1 - y
\end{array} \right\}
\]

\[\Rightarrow I = \int_{y=0}^{y=1} \int_{z=0}^{z=2y-y^2} f(x,y,z) \, dx \, dz \, dy
+ \int_{y=1}^{y=\sqrt{1+y^2}} \int_{z=0}^{z=2y-y^2} f(x,y,z) \, dx \, dz \, dy
\]

= summing order of \(x \) then \(y \)

\[\left\{ \begin{array}{c}
0 \leq z \leq 1 - \sqrt{1+y^2} \\
0 \leq y \leq 1 - \sqrt{1+y^2} \\
0 \leq x \leq \sqrt{1+y^2}
\end{array} \right\}
\]

\[I = \int_{y=0}^{y=1} \int_{z=0}^{z=2y-y^2} f(x,y,z) \, dx \, dz \, dy
+ \int_{y=1}^{y=\sqrt{1+y^2}} \int_{z=0}^{z=2y-y^2} f(x,y,z) \, dx \, dz \, dy
\]