Solution to problem number 9.5

Problem 1 (9.5). Suppose that \(L : K \) is a finite normal extension and that \(f \) is an irreducible polynomial in \(K[x] \). Suppose that \(g \) and \(h \) are irreducible monic factors of \(f \) in \(L[x] \). Show that there is an automorphism \(\sigma \) of \(L \) which fixes \(K \) such that \(\sigma(g) = h \).

Proof. We may assume that \(f \) is monic without harm, and do so. Now, since \(L : K \) is normal there is \(m_L \in K[x] \) such that \(L \) is the splitting field for \(m_L \) over \(K \) (this by Cor. 1 to Theorem 9.1). Let \(\omega_1, \ldots, \omega_n \) be the roots of \(m_L \), so that \(L = K(\omega_1, \ldots, \omega_n) \) (Theorem 7.1), and let \(\Sigma \) be the splitting field for \(f \) over \(L \). Of course \(\Sigma : K \) and \(f m_L \) splits over \(\Sigma \). Suppose that \(F \) is a subfield of \(\Sigma \) containing \(K \) and that \(f m_L \) splits over \(F \). Then \(\omega_1, \ldots, \omega_n \in F \) so that \(F \) also contains \(L \), and hence \(F = \Sigma \). So \(\Sigma \) is the splitting field for \(f m_L \) over \(K \) and thus is normal over \(K \) (Theorem 9.1).

We may suppose, without loss of generality, that \(\deg g \leq \deg h \) (if in fact \(\deg h \leq \deg g \), the argument below provides an automorphism \(\sigma : L \to L \) which fixes \(K \) and sends \(h \to g \), whence \(\sigma^{-1} \) is an automorphism satisfying the required conditions). Let \(\alpha, \beta \in \Sigma \) be roots of \(g \) and \(h \) respectively. It follows that \(\alpha \) and \(\beta \) are roots of \(f \); in fact, since \(f \) is a monic irreducible in \(K[x] \), it is the unique minimal polynomial of both \(\alpha \) and \(\beta \) over \(K \). So by Cor. 1 to Theorem 7.4 there is a unique isomorphism \(i : K(\alpha) \to K(\beta) \) which extends the identity map on \(K \) and sends \(\alpha \) to \(\beta \).

Certainly \(\Sigma \) is a splitting field for \(f m_L \) over \(K(\alpha) \) (\(f m_L \) obviously splits over \(\Sigma \) and any smaller field \(F \) containing \(K(\alpha) \) over which \(f m_L \) splits necessarily contains \(K \) so that \(\Sigma = F \) as required). Similarly, \(\Sigma \) is a splitting for \(i(f m_L) \) over \(K(\beta) \) because \(i(f m_L) = f m_L \) (recall that \(i \) fixes \(K \)). Thus by Theorem 7.5, there is an automorphism \(j : \Sigma \to \Sigma \) which extends \(i \).

Now we have \(\Sigma : L : K \) with \(\Sigma : K \) and \(L : K \) normal extensions, and conclude, by Theorem 9.2, that \(j(L) = L \). So let \(\sigma = j|_L \), and consider \(\sigma(g) \). Now \((x-\alpha) \) divides \(g \) (over \(\Sigma[x] \)), so \(j(x-\alpha) = i(x-\alpha) = (x-\beta) \) divides \(j(g) = \sigma(g) \), that is, \(\beta \) is a root of \(\sigma(g) \). But \(h \) is the minimal polynomial for \(\beta \) over \(L \), so \(h \) divides \(\sigma(g) \). On the other hand, \(\sigma(g) \) is monic (since \(g \) is monic) and \(\deg \sigma(g) = \deg g \leq \deg h \), so \(\sigma(g) = h \) as required.

\(\Box \)