1. Number 11, page 68 AM.

2. Let $K \subset L$ be fields with K algebraically closed. Let f_1, \ldots, f_m be polynomials in x_1, \ldots, x_n which vanish simultaneously at a point in L^n. Show that they vanish simultaneously at some point of K^n.

3. Let $K \subset L$ be fields with K algebraically closed. Let F be an irreducible polynomial in $K[z_1, \ldots, z_n]$, a polynomial ring. Show that F is irreducible in $L[z_1, \ldots, z_n]$. (It may help to think of the problem of factoring F as a problem in solving equations).

4. Let $A \subset B$ be rings and suppose that A is a direct summand of B an an A-module (i.e. $B = A \oplus_A E$ where E is an A submodule but need not be an ideal). Prove that if B is Noetherian, the A is Noetherian. Hint: use a result we proved in class.

5. If A is a commutative ring, define a topology on Spec A by letting a set of prime ideals be closed if and only if it has the form $V(W)$ for some subset W of A, where $V(W) = \{ P \in \text{Spec } A \mid P \supset W \}$.

 (a) Show that if I is the ideal generated by W and J is the radical of I, then $V(W) = V(J)$.

 (b) Verify that the sets $V(W)$ satisfy the axioms for the closed sets of a topology on Spec A.

 (c) Verify that there is a bijection between the closed sets in Spec A and the radical ideals of A given by letting J correspond to $V(J)$.

 Reminder: a topology on a set X is a set T of subsets of X called closed sets such that
 i. $\emptyset \in T$,
 ii. $X \in T$, and
 iii. T is closed under infinite intersections and finite unions.

6. Suppose $A \subset B$ are rings and that B is module finite as an A-algebra. Let p be a prime ideal of A. The lying over theorem shows that there is at least one prime q of B with $q \cap A = p$. Show that there are only finitely many such primes q. Hint: Suppose B can be generated as an A-module by n elements, and suppose there were $n+1$ such q, say q_1, \ldots, q_{n+1}. Localize both A and B at $S = A - p$, let m be the extension of p to A_p, and let q'_i be the extension of q_i to $S^{-1}B$. What kind of ideals are the q'_i? What kind of ring extensions do you get if you divide A_p by m and $S^{-1}B$ by $\cap q'_i$?

7. Show by example that the preceding problem would be false if we assumed only that B were integral over A.

8. Let D be a domain and let $\{ D_i \}_{i \in I}$ be a family of sub-domains of D, for some index set I. Suppose each D_i is normal. Show that $\cap_{i \in I} D_i$ is normal.