Each cash flow of a fixed income security must be discounted at the factor or rate appropriate for the term of that cash flow.

<table>
<thead>
<tr>
<th>Time to Maturity</th>
<th>Discount Factor</th>
<th>Spot Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.97557</td>
<td>5.008%</td>
</tr>
<tr>
<td>1</td>
<td>0.95247</td>
<td>4.929%</td>
</tr>
<tr>
<td>1.5</td>
<td>0.93045</td>
<td>4.864%</td>
</tr>
<tr>
<td>2</td>
<td>0.90796</td>
<td>4.886%</td>
</tr>
<tr>
<td>2.5</td>
<td>0.88630</td>
<td>4.887%</td>
</tr>
</tbody>
</table>
Yield-to-Maturity

- Yield-to-maturity, or yield, is the single rate that when used to discount a bond's cash flows, produces the bond's market price.
- Yield is not a good measure of relative value or of realized return to maturity.
- If a bond's YTM remains unchanged over a short time period, that bond's realized total rate of return equals its yield.

1.5 year maturity, coupon rate is 4.5%, price is 105.856

\[
105.856 = \frac{2.25}{1 + \frac{y}{2}} + \frac{2.25}{\left(1 + \frac{y}{2}\right)^2} + \frac{2.25}{\left(1 + \frac{y}{2}\right)^3}
\]

The price of a T-year security making semiannual payments of \(c/2\) and a final principal payment of \(F\) is:

\[
P(T) = \frac{c}{y} \left[1 - \left(\frac{1}{1 + y/2}\right)^{2T}\right] + F \left(\frac{1}{1 + y/2}\right)^{2T}
\]
From the formula

- When Coupon Rate = YTM. Par bonds.
- When Coupon Rate > YTM, Premium bonds. The bonds are selling for more than face value.
- When Coupon Rate < YTM, Discount bonds, or the bond sells at a discount to par.

Bond prices approach par as they approach maturity: pull to par.

If a bond’s YTM over a six-month period remains unchanged, the annual total return of the bond over that period equals its YTM.

\[
P_0 = \frac{c}{1 + \frac{y}{2}} + \frac{c}{(1 + \frac{y}{2})^2} + \cdots + \frac{1 + c/2}{(1 + \frac{y}{2})^{2T}}
\]

\[
P_{1/2} = \frac{c}{2} + \frac{c}{1 + \frac{y}{2}} + \cdots + \frac{1 + c/2}{(1 + \frac{y}{2})^{2T-1}}
\]

\[
P_{1/2} = (1 + \frac{y}{2})P_0
\]

\[
y = 2\left(\frac{P_{1/2}}{P_0} - 1\right)
\]
6.25s, 2 year maturity, \(YTM = ?? \)

Spot Rates: 5.008\%, 4.929\%, 4.864\%, 4.886\%

\[
102 + \frac{18.125}{32} = \frac{3.125}{1 + \frac{y}{2}} + \left(1 + \frac{y}{2}\right)^{-1} \cdot \frac{3.125}{1 + \frac{y}{2}} + \left(1 + \frac{y}{2}\right)^{-2} \cdot \frac{3.125}{1 + \frac{y}{2}} + \left(1 + \frac{y}{2}\right)^{-3} \cdot \frac{103.125}{1 + \frac{y}{2}}
\]

- Flat term structure of spot rates, \(YTM = \text{Spot} \)
- Upward sloping, \(YTM \) is below the last spot
- Downward sloping, \(YTM \) above last spot

Yield, cash flow, and spot rates

- Yield of a zero coupon bond of a particular maturity equals the spot rate of that maturity.
- Par coupon bonds: coupon bonds selling at par, the yield equals the coupon rate \(c \).
Par Coupon Bonds

\[\frac{100c}{2} \sum_{t=1}^{2T} d(t/2) + 100d(T) = 100 \]
\[c = \frac{2[1-d(T)]}{\sum_{t=1}^{2T} d(t/2)} \]

Par Nonprepayable Mortgage:

present value=amount borrowed=par
yield discounts future cash flows into PV

\[X \sum_{t=1}^{2T} d(t/2) = 100 \]
\[X = 100 / \left(\sum_{t=1}^{2T} d(t/2) \right) \]
\[100 = X \sum_{t=1}^{2T} \frac{1}{(1+y_T/2)^t} \]

Discussion of Figure

- All equal at .5 years
- Short-end, downward sloping, par yields exceed zero yields, negligible
- Medium-term, upward sloping, zero yields exceed par yields, spread increasing
- Long-end, down sloping, spread narrows
- Qualitatively, relative to zero yield, mortgage yield is just like par yield, except more pronounced
YTM and relative value: the coupon effect

- The impact of coupon level on the YTM of coupon bonds with the same maturity is called the coupon effect.
- The size of the coupon effect depends very much on the shape of the term structure of interest rates and the cash flow structure of the securities.

YTM and realized return

\[
\frac{102 + 18.125}{32} = \frac{3.125}{1 + \frac{Y}{2}} + \frac{3.125}{1 + \frac{Y}{2}} + \frac{3.125}{1 + \frac{Y}{2}} + \frac{103.125}{1 + \frac{Y}{2}}
\]

\[
102.5664\left(1 + \frac{Y}{2}\right)^4 = 3.125\left[\left(1 + \frac{Y}{2}\right)^4 + \left(1 + \frac{Y}{2}\right)^4 + \left(1 + \frac{Y}{2}\right)^4 + \left(1 + \frac{Y}{2}\right)^4\right] + 103.125
\]

- YTM is not the bond's return if held to maturity
- Coupons are invested at uncertain future rates