No Calculators, closed book, no lecture notes, no homework. Show steps.

1. The block matrix system of equations
 \[
 \begin{bmatrix}
 A & 0 & 0 \\
 0 & I & -A^T \\
 -I & Y & 0 \\
 \end{bmatrix}
 \begin{bmatrix}
 x_i \\
 x_v \\
 x_d \\
 \end{bmatrix}
 =
 \begin{bmatrix}
 0 \\
 0 \\
 b \\
 \end{bmatrix}
 \]
 models a resistive electrical circuit with the vector \(x = [x_i, x_v, x_d]^T \) representing its circuit element currents, voltages, and the circuit graph node voltages with respect to a common “ground node” (Note that \(I \) is a unit sub-matrix). Without using any sub-matrix inverses, show the node voltages \(x_d \) are the solution to the system \(AY^T x_d = Ab \) (HINT: write out the three sub-matrix equations then eliminate \(x_i \) and \(x_v \) from the third sub-matrix equation).

2. For \(A = \begin{bmatrix} 1 & 5 \\ 3 & 17 \end{bmatrix} \) and \(b = \begin{bmatrix} 2 \\ 2 \end{bmatrix} \), find the solution \(x \) to \(A x = b \) by first finding a lower triangular matrix \(L \) and an upper triangular matrix \(U \) such that \(LU = A \), and then calculating \(x \) with a forward and back substitution process on the resulting system \(LU x = b \).