Let $N > 1$ be a square integer. Find the integer part of
\[1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \ldots + \frac{1}{\sqrt{N}}. \]

Solutions should be submitted to Morgan Sherman:

Dept. of Mathematics, Cal Poly
Email: sherman1 -AT- calpoly.edu
Office: bldg 25 room 329

before the due date above. Those with correct and complete solutions will have
their names listed on the puzzle’s web site (see below) as well as in the next
email announcement. Anybody associated to Cal Poly is welcome to make a
submission.

http://www.calpoly.edu/~sherman1/puzzleoftheweek

Solution: The sum has integer part $2\sqrt{N} - 2$.

Let s denote the sum. By comparing the sum with related integrals we find the inequalities:
\[\int_{1}^{N+1} \frac{dx}{\sqrt{x}} < s < 1 + \int_{1}^{N} \frac{dx}{\sqrt{x}}. \]

Calculating these integrals we find that
\[2\sqrt{N+1} - 2 < s < 2\sqrt{N} - 1 \]

Hence
\[2\sqrt{N} - 2 < s < 2\sqrt{N} - 1 \]

and the result follows.