Consider the following construction: Begin with a unit circle and its circumscribed equilateral triangle; then circumscribe about the triangle a new circle, and circumscribe about it a square; continue in this way, so that after constructing a regular \(n \)-gon you circumscribe it with a circle and circumscribe the new circle with a regular \(n + 1 \)-gon. If \(r_3 = 1 \) denotes the radius of the first circle, and in general we let \(r_n \) denote the radius of the circle which circumscribed the regular \(n - 1 \)-gon, then what is a formula for \(r_n \)?

Correct to four decimal places, what is \(r_{1000} \)? Do you think \(r_n \) tends to a finite value, or infinity, as \(n \to \infty \)? (No proof required)

Solutions should be submitted to Morgan Sherman:

Dept. of Mathematics, Cal Poly
Email: sherman1 -AT- calpoly.edu
Office: bldg 25 room 329

before the due date above. Those with correct and complete solutions will have their names listed on the puzzle’s web site (see below) as well as in the next email announcement. Anybody associated to Cal Poly is welcome to make a submission.

http://www.calpoly.edu/~sherman1/puzzleoftheweek