A sequence of positive integers \(\{a_n\}_{n=1}^\infty \) satisfies
\[
a_{n+3} = a_{n+2}(a_{n+1} + a_n), \quad n = 1, 2, 3, \ldots
\]
If \(a_6 = 8820 \), determine the possible values of \(a_1, a_2, a_3, a_7, \) and \(a_8 \).

Solution: There are two possibilities: \((a_1, a_2, a_3) = (2, 2, 7) \) or \((29, 6, 1) \).

We first calculate that \(8820 = 2^2 \cdot 3^2 \cdot 5 \cdot 7^2 \) and, using the recurrence relation repeatedly, we get \(a_6 = a_3^2(a_3 + a_2)(a_2 + a_1)(a_2 + a_1 + 1) \). We set \(x = a_3, y = a_3 + a_2, z = a_2 + a_1 \). Then we are looking for positive integer solutions to
\[
2^2 \cdot 3^2 \cdot 5 \cdot 7^2 = x^2 \cdot y \cdot z \cdot (z + 1), \quad x < y < x + z. \tag{1}
\]

We notice that one of \(z \) or \(z + 1 \) is even, so \(x \) cannot be, which leaves only four possibilities for \(x^2 : 1, 3^2, 7^2, 3^2 \cdot 7^2 \).

If \(x^2 = 1 \): Then (1) implies that \(8820 = y \cdot z \cdot (z + 1) < z(z + 1)^2 \). It follows that \(z > 20 \). The only pair of divisors \(z, z + 1 \) to 8820 with \(z > 20 \) is \(z = 5 \cdot 7 = 35 \) and \(z + 1 = 2^2 \cdot 3^2 = 36 \). This leads to the solution \(x = 1, y = 7, z = 35 \), which gives \(a_1 = 29, a_2 = 6, a_3 = 1 \).

If \(x^2 = 3^2 \): Then (1) implies that \(\frac{8820}{9} < z(z + 1)(z + 3) \). This implies \(z > 8 \). But there are no pairs of divisors \(z, z + 1 \) to \(\frac{8820}{9} = 2^2 \cdot 5 \cdot 7^2 \) with \(z > 8 \).

If \(x^2 = 7^2 \): Then (1) becomes \(2^2 \cdot 3^2 \cdot 5 = yz(z + 1) \) and \(7 < y < z + 7 \). Also \(z \) and \(z + 1 \) must both divide \(2^2 \cdot 3^2 \cdot 5 \). A quick check and we find the only possibility is \((x, y, z) = (7, 9, 4) \), which leads to \(a_1 = 2, a_2 = 2, a_3 = 7 \).

If \(x^2 = 3^2 \cdot 7^2 \): Then (1) becomes \(2^2 \cdot 5 = yz(z + 1) \), \(21 < y < z + 21 \). So \(20 > y(y - 21)(y - 20) \) which gives \(y < 1 \), a contradiction.