Does the series \(\sum_{n=0}^{\infty} \sin \left(\pi \sqrt{n^2 + 1} \right) \) converge? Justify your solution.

Solutions should be submitted to Morgan Sherman:

Dept. of Mathematics, Cal Poly
Email: sherman1 -AT- calpoly.edu
Office: bldg 25 room 310

before next Friday. Those with correct and complete solutions will have their names listed on the puzzle’s web site (see below) as well as in next week’s email announcement. Anybody is welcome to make a submission.

http://www.calpoly.edu/~sherman1/puzzleoftheweek

Solution: The series converges.

I borrowed this problem from an old University of Illinois at Urbana Champagne undergraduate math constest. Let \(\epsilon_n = \sqrt{n^2 + 1} - n \). Since

\[
\epsilon_n = \sqrt{n^2 + 1} - n = \frac{1}{\sqrt{n^2 + 1} + n}
\]

it is clear that the sequence \(\{\epsilon_n\} \) decrease to a limit of 0. Therefore the same is true of \(\{\sin(\pi \epsilon_n)\} \) once \(\epsilon_n < 1/2 \) (since \(\sin(x) \) is increasing on \((0, \pi/2)\)). Now

\[
\sin \left(\pi \sqrt{n^2 + 1} \right) = \sin \left(\pi (n + \epsilon_n) \right) = \cos(\pi n) \sin(\pi \epsilon_n) = (-1)^n \sin(\pi \epsilon_n)
\]

so the Alternating Series Test applies and the series is convergent.