Puzzle of the Week
May 21-27, 2010

Calculate the integral:

\[\int_0^{\pi/2} \frac{dx}{1 + (\tan(x))^{\sqrt{5}}} \]

[Hint: \(\tan(\pi/2 - u) = \cot(u) \)]

Solutions should be submitted to Morgan Sherman:

Dept. of Mathematics, Cal Poly
Email: sherman1 @ calpoly.edu
Office: bldg 25 room 310

before next Friday. Those with correct and complete solutions will have their names listed in next week’s email announcement. Anybody is welcome to make a submission.

Solution:
The value of the integral is \(\frac{\pi}{4} \).

This problem appeared on the 1980 Putnam Exam (without the hint, and with an exponent of \(\sqrt{2} \) instead of \(\sqrt{5} \)). Following the hint we make the substitution \(u = \frac{\pi}{2} - x \) to find

\[I = \int_0^{\pi/2} \frac{dx}{1 + (\tan x)^{\sqrt{5}}} = - \int_0^{\pi/2} \frac{du}{1 + (\cot u)^{\sqrt{5}}} = \int_0^{\pi/2} \frac{(\tan u)^{\sqrt{5}}}{1 + (\tan u)^{\sqrt{5}}} \]

and therefore

\[2I = \int_0^{\pi/2} \frac{dx}{1 + (\tan x)^{\sqrt{5}}} + \int_0^{\pi/2} \frac{(\tan x)^{\sqrt{5}}}{1 + (\tan x)^{\sqrt{5}}} = \int_0^{\pi/2} \frac{1 + (\tan x)^{\sqrt{5}}}{1 + (\tan x)^{\sqrt{5}}} \]

Hence the answer above.