Figure A1 - A single 180 degree turn without heading acceleration input, deployed flying 0 degrees from desired heading
Figure A2 A single 180 degree turn **without** heading acceleration input, deployed flying 0 degrees from desired heading
Figure A3 A single 180 degree turn *without* heading acceleration input, deployed flying 0 degrees from desired heading
Figure A4 1 180 degree turn without heading acceleration input, deployed flying 180 degrees from desired heading
Figure A5 1 180 degree turn without heading acceleration input, deployed flying 180 degrees from desired heading.
Figure A6 1 180 degree turn with heading acceleration input, deployed flying 180 degrees from desired heading.
Figure A7 1 180 degree turn with heading acceleration input, deployed flying 180 degrees from desired heading
Figure A8 1 180 degree turn with heading acceleration input, deployed flying 90 degrees from desired heading
Figure A9 1 180 degree turn with heading acceleration input, deployed flying 90 degrees from desired heading
Figure A10 180 degree turn without heading acceleration input, deployed flying 90 degrees from desired heading
Figure A11 1 180 degree turn without heading acceleration input, deployed flying 90 degrees from desired heading
Figure A12 1 180 degree turn without heading acceleration input, deployed flying 90 degrees from desired heading, with wind gusts amp. .1 and freq .5 rad/sec.
Figure A13 1 180 degree turn without heading acceleration input, deployed flying 90 degrees from desired heading, with wind gusts amp. .1 and freq .5 rad/sec.
Figure A14 1 180 degree turn without heading acceleration input, deployed flying 90 degrees from desired heading, with noise variance 2.0 degrees
Figure A15 1 180 degree turn without heading acceleration input, deployed flying 90 degrees from desired heading, with noise variance 2.0 degrees
Figure A16 1 180 degree turn without heading acceleration input, deployed flying 90 degrees from desired heading, with noise variance 2.0 degrees
Figure A17 1 180 degree turn with heading acceleration input, deployed flying 90 degrees from desired heading, with noise variance 2.0 degrees
Figure A18 1 180 degree turn with heading acceleration input, deployed flying 90 degrees from desired heading, with noise variance 2.0 degrees
Figure A19 1 180 degree turn with heading acceleration input, deployed flying 90 degrees from desired heading, with noise variance 2.0 degrees
Figure A20 1 180 degree turn without heading acceleration input, deployed flying 90 degrees from desired heading, with wind gusts amp. .1 and freq .5 rad/sec. And noise variance 2.0 degrees
Figure A21 180 degree turn without heading acceleration input, deployed flying 90 degrees from desired heading, with wind gusts amp. .1 and freq .5 rad/sec. And noise variance 2.0 degrees
Figure A22 1 180 degree turn without heading acceleration input, deployed flying 90 degrees from desired heading, with wind gusts amp. .1 and freq .5 rad/sec. And noise variance 2.0 degrees
Figure A23 1 180 degree turn without heading acceleration input, deployed flying 180 degrees from desired heading, noise variance 2.0 degrees, with wind gusts amp. .5 and freq .01 rad/sec.
Figure A24 1 180 degree turn without heading acceleration input, deployed flying 180 degrees from desired heading, noise variance 2.0 degrees, with wind gusts amp. .5 and freq .01 rad/sec.