Magnetite in Freshwater Magnetotactic Bacteria

Abstract. A previously undescribed magnetotactic Spirillum isolated from a freshwater swamp was mass cultured in the magnetic as well as the nonmagnetic state in chemically defined culture media. Results of Mössbauer spectroscopic analysis applied to whole cells identifies magnetite as a constituent of these magnetic bacteria.

Iron-containing bacteria from diverse aquatic environments which orient and swim in a preferred direction in weak (0.1 gauss) magnetic fields (magnetotaxis) have been described (1). Cellular iron is localized in crystals (100 by 150 nm) within these bacteria. Kalmijn and Blakemore (2) demonstrated geomagnetic orientation by similar bacteria in saltmarsh sediments. These workers subsequently obtained evidence through cell remagnetization studies that the bacteria exhibited properties of single domain ferromagnets (3). Thus, the directed swimming response of magnetic bacteria to geomagnetism is a direct one, clearly different from electromagnetic induction exhibited by elasmobranch fishes (4).

Definitive studies of the chemical nature of iron in magnetic bacteria have not been possible because the organisms have not been available in pure culture. Recently, Blakemore (5) isolated a fresh-water magnetotactic bacterium. In this report, we describe the results of Mössbauer spectroscopic analyses of magnetic and nonmagnetic whole cells of this isolate cultured in chemically defined media.

The organism was an unclassified magnetotactic Spirillum (Fig. 1) designated strain MS-1. It was isolated from sediments of Cedar Swamp, Woods Hole, Massachusetts, and appears to be a new bacterial species by criteria separate from its magnetic properties. Characterization, taxonomy, and details of cultivating this organism have been studied (6). Cells of the organism were cultured under microaerobic conditions (the O2 atmosphere over the cultures was initially 6 to 7 μM) in a liquid medium containing filtered bog water with succinic acid and sodium nitrate as the principal sources of carbon and nitrogen, respectively. Subsequently, a chemically defined medium lacking bog water was employed. Iron was supplied in this latter culture medium to a final total iron concentration of 1.6 mg liter⁻¹, as ferric sulfate and ferric nitrate. Results of atomic absorption spectrophotometric analyses indicated that magnetic cells contained 1.5 percent of their dry weight as iron. The cells contained an average of 22 intracellular crystals, each approximately 50 nm on a side (Fig. 1).

After prolonged culture of strain MS-1 in a medium with less iron, cells grew nonmagnetically. They did not align with stationary external magnetic fields or rotate in response to reversal of the ambient field. From such a culture, a homogeneously nonmagnetic population of cells was obtained by standard microbiological cloning procedures. Nonmagnetic cells lacked intracellular crystals present in magnetic cells and contained less than one-tenth the amount of iron of magnetic cells. In other respects, the two types were similar. Nonmagnetic cells were maintained in a chemically defined medium identical to that used for magnetic cells, except that ferric nitrate was deleted. The total iron content of this medium was 3.6 μM.

Cells were mass cultured at 30°C in glass carboys having a 10-liter capacity. They were harvested by continuous flow centrifugation (15,000 rev/min) at 10°C. Cell yields were (wet weight) 0.2 to 0.5 g per liter. Harvested cells were washed three times in distilled water and lyophilized. They were not exposed to magnetic fields stronger than those normally associated with general laboratory conditions (such as a-c motors, pumps, and electrical lines) during growth, harvest, or preparation for analyses.

Mössbauer spectra at room temperature were obtained with 350-μg samples of freeze-dried cells grown under various conditions. Cells analyzed included (i) magnetic cells grown in medium containing bog water, (ii) magnetic cells grown in chemically defined medium containing 29 μM iron, and (iii) nonmagnetic cells grown in chemically defined medium containing 3.6 μM iron.

No discernible γ-ray absorption greater than 0.2 percent was observed in nonmagnetic cells (Fig. 2a). The Mössbauer spectrum of magnetic cells grown in medium containing bog water (data not shown) was identical to that of magnetic cells cultured in chemically defined medium (Fig. 2b). The spectrum of Fig. 2b can be characterized as being due primarily to iron in magnetite (7). There are, however, two significant differences between the spectrum in Fig. 2b and the spectrum of stoichiometric magnetite (Fig. 2c). These are (i) an extra absorption area close to ν = 0 (Fig. 2b), which...
Fig. 1. Electron micrograph of thin-sectioned magnetic cells of strain MS-1. Chains of crystals are present within the cell; bar is 250 nm.

appears to be that of a quadrupole doublet and (ii) a ratio of intensities of the two lowest velocity lines (Fig. 2b) which is closer to 1:1 than 1:2 as in the spectrum of stoichiometric magnetite (Fig. 2c). The spectrum of Fe$_3$O$_4$ (magnetite) at room temperature is a superposition of two six-line spectra. One corresponds to Fe$^{3+}$ in tetrahedral sites and the other to Fe$^{3+}$ and Fe$^{2+}$ connected by rapid electron exchange in octahedral sites. Introduction of vacancies in the octahedral sublattice (8) or γ-Fe$_3$O$_4$ on the surface of the particle (9) will cause the relative intensities of the two subspectra to change, with consequent changes in the relative intensities of the two lowest velocity lines. Hence, the iron-containing material in the freshwater bacteria grown in bog water medium, or in chemically defined medium, can be described as ferrimagnetic Fe$_3$O$_4$ with either ~ 4 percent vacancies in the octahedral sublattice or with a small (several percent) admixture of a γ-Fe$_3$O$_4$ phase. Mössbauer spectra obtained at low temperature and in external magnetic fields are consistent with the identification of the iron-containing material as magnetite (data not shown).

The material producing the extra quadrupole doublet cannot be precisely identified as yet but from the isomer shift it appears to be Fe$^{3+}$ with oxygen coordination. One possibility is magnetite which is not of sufficient size to be fully magnetized single domain particles, that is, superparamagnetic magnetite (10). Another possibility is an iron-storage protein such as ferritin, which also produces a quadrupole doublet at room temperature (11). However, ferritin itself has not been identified with prokaroytic cells. Finally, it may be another iron-storage compound (12) or an uncharacterized iron-containing compound in which the density of iron is too low to be

magnetically ordered at room temperature.

Magnetite crystals with dimensions of those present in strain MS-1 (50 nm) are within the single domain size range according to the calculations of Butler and Banerjee (13) and the measurements of Dunlop (14). Each has a calculated magnetic moment, $M = 1.3 \times 10^{-12}$ electromagnetic units, sufficient to produce alignment in the geomagnetic field, $H = 0.5$ gauss, at ambient temperatures ($MH = 6.6 \times 10^{-12}$ erg, $k_B T = 4.1 \times 10^{-14}$ erg, where $k_B T$ is the thermal energy at $T = 300$ K). Thus, the magnetite in these cells constitutes a biomagnetic compass, in confirmation of the original hypothesis of Kalmijn and Blakemore (1).

Magnetite is present in the radular cappings of chitonites (15), in the abdomens of live bees (16), and the skulls of pigeons (17). Except for magnetic bacteria, however, it has not been demonstrated that the presence of magnetite in living organisms bears any relation to their orientational responses to external magnetic fields. Thus, the bacteria provide a basis for considering the intriguing possibility that magnetite may also be involved in the orientational responses of some eukaryotic organisms to geomagnetism.

RICHARD B. FRANKEL
Francis Bitter National Magnet Laboratory, Massachusetts Institute of Technology, Cambridge 02139

RICHARD P. BLAKEMORE
Department of Microbiology, University of New Hampshire, Durham 03824

RALPH S. WOLFE
Department of Microbiology, University of Illinois, Urbana 61501

References and Notes
5. R. P. Blakemore, while working in the laboratory of R. S. Wolfe.
17. C. Walcott, personal communication.
18. We thank D. R. Balkwell for electron microscopy; N. A. Blakemore and D. Maradet for technical contributions; and A. J. Kalmijn for inspiration and support. Supported by NSF grants to the Francis Bitter National Magnet Laboratory and by NSF grant PCM 77-12175.

26 October 1978; revised 27 November 1978

1356

SCIENCE, VOL. 203