How Airplanes Fly

Bob Kelley-Wickermeyer
Chief Engineer - Aerodynamics & Enabling Technology
Boeing Commercial Airplanes

Agenda

• Basic Physics of Flight
• What’s happening during a flight
• Rule of Thumb airplane design
• Testing the airplane’s ability to fly

Basic Forces
What’s in Weight?

- **Payload**
 - Fuel
- **Operating Items**
 - Systems
 - Propulsion
 - Landing Gear
 - Body
 - Wing & Tail

Airplane

Empty Weight (OEW)

Paying Passengers and Cargo

Weight

Food, Supplies

Navigate, control & support life

Generate force to move airplane

Support airplane on the ground

Enclose the payload

Provide lift

Weight changes during the flight.

End of Flight

Burn off fuel

Start of Flight

Payload

- Fuel

Operating Items

- Systems
- Propulsion
- Landing Gear
- Body
- Wing & Tail

- Food, Supplies
- Navigate, control & support life
- Generate force to move airplane
- Support airplane on the ground
- Enclose the payload
- Provide lift

How do you make Lift?

Bernoulli:

“The faster the air flows over the surface, the lower the pressure air exerts on the surface.”
How to Change Lift

- Since Lift is about the same as weight and weight changes, then must be able to change lift.
 - Increase lift by
 - increasing the tilt of the wing
 - increasing the speed of the airplane (actually speed squared)
 - decreasing the altitude of the airplane above the ground.

But there are Limits to Lift

Lift

Airfoil Tilt Angle

“Stall”
The flow no longer can stay attached to the upper surface.

Ways around the Limits to Lift

Lift

Airfoil Tilt Angle

“Slats & Flaps”

“Slats”
Wings are made up of airfoils

A propeller produces thrust like a wing produces lift except:
- The propeller is a wing rotated 90 degrees
- The speed over the airfoil comes from rotating the prop.

How does a jet engine produce thrust?

A jet engine “sucks, squeezes, burns and blows.”
What is “Drag”?

- Lift and Span
- Aerodynamic details
- Smoothness
- Outside surface area

Induced “Pressure”

- Due to the influence of an airfoil on those outboard of it
- Due to the rapid growth of the boundary layer
- Due to roughness, gaps & antennas

Excrescence

- Due to the friction in the boundary layer next to the skin to the air flowing over the skin

What & Why Trim?

- Trim comes from a wing like surface mounted on the back of the airplane
- To change the tilt of the airplane
 - increase down load - airplane nose goes up
 - decrease down load - airplane nose goes down

Airplane Controls

- Fin
- Rudder
- Elevators
- Slats
- Aileron
- Flaps
- Stabilizer (Tail)
- Spoilers
Airplane Stability

A stable system

Move the ball away from the bottom and it returns to the bottom.
Because ball’s center of gravity is above the bottom of the bucket.

A stable airplane

Move the nose of the airplane up and the airplane’s nose will come back down.
Because airplane’s center of lift is aft of the center of weight.

How does an airplane turn?

It banks.

Why to airplanes have rudders?

To balance an inoperative engine & crosswinds.
Typical Flight

For every trip, load enough fuel to fly to the intended destination, hold and then divert to an alternate airport.

How do airplanes takeoff?

About 18 Million Takeoffs worldwide in a year

Build up speed at a flat attitude, rotate to flying attitude, liftoff and accelerate to climb speed.

Descend and Land

about 1/2 hour

- Throttle: 7000–8000 lbs.
- Glide slope: 2 degrees
- Landing speed: 150–180 knots
- Full after stop braking
- Ground speed: 100–120 knots
Let’s Build an Airplane

• Roughly how many passengers?
 – 100, 200, 300, ?
• What type of Range capability?
 – International, Transcon, Local
• What can the engine manufacturers do?

Floor Area

For a long range airplane, allow about 13 square feet per passenger. For 305 passengers = 4000 sq. ft.

Aerodynamicists like things that are 10 times longer than they are wide.

Payload Cabin

Cross section of the cabin is a result of experience working with airlines.

Payload weight is 231# times the number of passengers plus 10%. Or, about 78,000# for 305 passengers.
Size and install wing

We need 1 sq ft of wing area for every 115# of takeoff weight.

Max. Takeoff weight is 7 times payload.

\[\text{TOGW} = 550000 \text{#} \]
\[\text{Area} = 4800 \text{ sq ft} \]

Locate wing aft of center of gravity for balance.

Install Landing Gear

Landing gear travels over 300,000 miles in its life

Has to be able to travel at over 250 miles an hour and support 1.5 times the weight of the airplane.

Locate gear so airplane does not tip up while loading.

Capability to pitch the airplane

Add structure outside the payload area to support the tail.

Tail size is 1/4 wing area if tail arm is 4 times wing chord.
Add thrust to make the airplane takeoff

Thrust with one engine not working = 15% Max takeoff weight

How Much Thrust?

Thrust to Weight Ratio (with one engine not working) = 0.15 to provide adequate takeoff climb.

<table>
<thead>
<tr>
<th>Takeoff Weight (1 engine not working)</th>
<th>Thrust Required</th>
<th>Number of engines on airplane</th>
<th>Number of engines Working</th>
<th>Required engine thrust</th>
</tr>
</thead>
<tbody>
<tr>
<td>555,000#</td>
<td>83,000#</td>
<td>4</td>
<td>3</td>
<td>27,700#</td>
</tr>
</tbody>
</table>

How Much Thrust?

Thrust to Weight Ratio (with one engine not working) = 0.15 to provide adequate takeoff climb.

<table>
<thead>
<tr>
<th>Takeoff Weight (1 engine not working)</th>
<th>Thrust Required</th>
<th>Number of engines on airplane</th>
<th>Number of engines Working</th>
<th>Required engine thrust</th>
</tr>
</thead>
<tbody>
<tr>
<td>555,000#</td>
<td>83,000#</td>
<td>4</td>
<td>3</td>
<td>27,700#</td>
</tr>
<tr>
<td>555,000#</td>
<td>83,000#</td>
<td>3</td>
<td>2</td>
<td>41,500#</td>
</tr>
</tbody>
</table>
How Much Thrust?
Thrust to Weight Ratio (with one engine not working) = 0.15 to provide adequate takeoff climb.

<table>
<thead>
<tr>
<th>Takeoff Weight</th>
<th>Thrust Required (1 engine not working)</th>
<th>Number of engines Working</th>
<th>Required engine thrust</th>
</tr>
</thead>
<tbody>
<tr>
<td>555,000#</td>
<td>83,000#</td>
<td>4</td>
<td>27,700#</td>
</tr>
<tr>
<td>555,000#</td>
<td>83,000#</td>
<td>3</td>
<td>41,500#</td>
</tr>
<tr>
<td>555,000#</td>
<td>83,000#</td>
<td>2</td>
<td>83,000#</td>
</tr>
</tbody>
</table>

Two engines are all that is required

Add a tail to control the direction with one engine not working
Add a flight deck to control the whole airplane

Design Envelope

Testing Airplane to see if it is ready to fly

• Objective to find problems before the airplane gets into service.