ADJOINTS OF COMPOSITION OPERATORS WITH IRRATIONAL SYMBOL

CAIXING GU, ERIN RIZZIE, AND JONATHAN SHAPIRO

ABSTRACT. In this paper we derive formulas for the adjoints of a class of composition operators with irrational symbol, in particular, the \(n \)-th root functions. We discuss these formulas on both the Hardy space and the Bergman space.

1. INTRODUCTION

Let \(\mathbb{D} \) be the open unit disk of the complex plane \(\mathbb{C} \). Let \(H(\mathbb{D}) \) be the space of all analytic functions on \(\mathbb{D} \). If \(\varphi \) is an analytic self-map of \(\mathbb{D} \), then the composition operator \(C_\varphi \) is defined on \(H(\mathbb{D}) \) by \(C_\varphi f = f \circ \varphi \) for \(f \in H(\mathbb{D}) \). The operators \(C_\varphi \) on subspaces of \(H(\mathbb{D}) \) such as the Hardy space \(H^2(\mathbb{D}) \) and the Bergman space \(A^2(\mathbb{D}) \) have been studied intensively for several decades [8, 22]. One of the useful tools to study \(C_\varphi \) is to find an explicit formula for the adjoint \(C_\varphi^* \). The formula for \(C_\varphi^* \) has proven to be of central importance in dealing with questions of norm computations of \(C_\varphi \), self-adjointness, essential normality of \(C_\varphi \), understanding the \(C^* \) algebra generated by \(C_\varphi \), and so on, see [2, 4, 3, 10, 18].

Here is a brief account of what is known about explicit formulas for \(C_\varphi^* \). In 1988, Cowen [6] derived the formula for \(C_\varphi^* \) on the Hardy space \(H^2(\mathbb{D}) \) when \(\varphi \) is a linear fractional transformation. This formula expresses \(C_\varphi^* \) as the product of two Toeplitz operators and another composition operator. This formula was extended to one on the Bergman space \(A^2(\mathbb{D}) \) by Hurst [17] in 1997, again for a linear fractional symbol \(\varphi \). In 2003, Gallardo-Gutiérrez and Montes-Rodríguez [12] obtained the formula for \(C_\varphi^* \) for a linear fractional symbol \(\varphi \) on the Dirichlet space \(D^2(\mathbb{D}) \). The space \(D^2(\mathbb{D}) \) consists of functions in \(H(\mathbb{D}) \) whose derivatives belong to \(A^2(\mathbb{D}) \). It took the effort of several authors [7, 15, 5] to discover and then refine what is now known as the HMR formula for \(C_\varphi^* \) on \(H^2(\mathbb{D}) \) when \(\varphi \) is a rational function. The special case where \(\varphi \) is an inner function was discussed earlier in [20]. Recently Heller [16] also found a formula for \(C_\varphi^* \) on the space \(S^2(\mathbb{D}) \) for a linear fractional symbol \(\varphi \); here \(S^2(\mathbb{D}) \) consists of functions whose derivatives belong to \(H^2(\mathbb{D}) \). There are some extensions of these results to composition operators on holomorphic spaces of several variables, for example, see Cowen and MacCluer [9]. The formula for \(C_\varphi^* \) is also studied on the Hardy space of the half plane by Elliot [11].

Received by the editors May 19, 2016.
1991 Mathematics Subject Classification. 47B33, 47A05.
We would like to thank the referee for providing many useful suggestions.

©2001 enter name of copyright holder
In this paper, we present formulas for C^*_φ on $H^2(\mathbb{D})$ or $A^2(\mathbb{D})$ where φ is an irrational function in the form $\sqrt[\varphi]{\psi(z)}$ or more generally $\omega\left(\sqrt[\varphi]{\psi(z)}\right)$ for rational functions $\psi(z)$ and $\omega(z)$. In Section 2, we will deal with the case $\varphi = \sqrt[\varphi]{\psi(z)}$ with $\psi(z)$ being a linear fractional map. In Section 3, we illustrate how to extend our idea to the most general case $\varphi = \omega\left(\sqrt[\varphi]{\psi(z)}\right)$ for rational functions $\psi(z)$ and $\omega(z)$.

2. The n-th root functions

Throughout the paper, let
\begin{equation}
L(z) = \frac{az + b}{cz + d}
\end{equation}
be a linear fractional transformation.

The following lemma, due to Cowen [6], is used in the formula for the adjoint of $C_{L(z)}$ on $H^2(\mathbb{D})$.

Lemma 2.1. The associated linear fractional transformation is defined by
\[L^*(z) = \frac{1}{L^{-1}(1/z)} = \frac{\pi z - \pi}{-bz + d}. \]

Then $L(z)$ is a self-map of the disk if and only if $L^*(z)$ is also a self-map of the disk.

The following formula can be proved by a direct computation.

Lemma 2.2. For $\alpha \in \mathbb{D}$,
\begin{equation}
\frac{1}{1 - \alpha L(z)} = \frac{cz + d}{d - b\alpha} \frac{1}{1 - L^*(\alpha)z}.
\end{equation}

If $L(z)$ is a nonvanishing self-map of the disk (i.e., $L(z) \neq 0$ for $z \in \mathbb{D}$), then $\varphi(z) = \sqrt[n]{L(z)}$ is an analytic self-map of \mathbb{D} by choosing a branch of the logarithm. Recall
\[H^2(\mathbb{D}) = \left\{ f \in H(\mathbb{D}) : \|f\|_{H^2}^2 = \sup_{0 < r < 1} \int_0^{2\pi} |f(re^{i\theta})|^2 \frac{d\theta}{2\pi} < \infty \right\}, \]
and the reproducing kernel of $H^2(\mathbb{D})$ is
\[K_\alpha(z) = \frac{1}{1 - \alpha z}. \]

For $f(z) \in L^\infty(\mathbb{T})$, the space of bounded functions on the unit circle \mathbb{T}, the Toeplitz operator T_f on $H^2(\mathbb{D})$ (or $A^2(\mathbb{D})$) is defined by
\[T_f : h \mapsto P[f(z)h(z)] = h \in H^2, \]
where P is the projection from $L^2(\mathbb{T})$ to $H^2(\mathbb{D})$ (or the projection from $L^2(\mathbb{D})$ to $A^2(\mathbb{D})$).
Theorem 2.3. Let \(\varphi(z) = \sqrt[2n]{L(z)} \) be a self-map of \(\mathbb{D} \), where \(L \) is a nonvanishing linear-fractional self-map of \(\mathbb{D} \). Then on the Hardy space \(H^2(\mathbb{D}) \),

\[
C_{\varphi(z)}^* = \sum_{k=0}^{n-1} T_{c(z)+d} C_{\varphi^{k}} T_{c(z)+d}^*(z),
\]

where \(\varphi(z) \) is a linear-fractional self-map of \(\mathbb{D} \) by Lemma 2.1, so the composition operator \(C_{L^*}(z^n) \) is a bounded operator. The Toeplitz operators appearing in (2.3) are all bounded.
This approach can be generalized to the reproducing kernel Hilbert space with reproducing kernel

\[
\frac{1}{(1 - \overline{\alpha}z)^m}, \text{ where } m > 0.
\]

The formula for \(C^*_L(z) \) on these spaces was derived by Hurst [17] for \(m > 1 \). When \(m \) is an integer, these spaces are important in operator theory, since the adjoint of multiplication by \(z \) on the vector-valued version of these spaces is a model for \(m \)-hypercontractions \([1, 14]\). We will work out the formula for \(C^*_\phi(z) \) for \(m = 2 \), the Bergman space \(A^2(\mathbb{D}) \). The results for other integers \(m \) are similar. When \(m \) is not an integer, however, an infinite sum is needed. Recall that

\[
A^2(\mathbb{D}) = \left\{ f \in H(\mathbb{D}) : \|f\|_{A^2}^2 = \int_{\mathbb{D}} |f(z)|^2 \, dA(z) < \infty \right\},
\]

where \(dA(z) \) is the normalized Lebesgue area measure of \(\mathbb{D} \). The reproducing kernel of \(A^2(\mathbb{D}) \) is

\[
A_\alpha(z) = \frac{1}{(1 - \overline{\alpha}z)^2}.
\]

Proposition 1. Let \(\phi(z) = \sqrt{L(z)} \) be a self-map of \(\mathbb{D} \), where \(L \) is a nonvanishing linear-fractional self-map of \(\mathbb{D} \). Then on the Bergman space \(A^2(\mathbb{D}) \),

\[
C^*_\phi(z) = \sum_{k=0}^{n-1} T_{(k+1)z^k} \frac{(z\overline{\phi})^k}{\alpha^k z^k} T^*_\phi(z^k) + \sum_{k=n}^{2n-2} T_{(2n-k-1)z^k} \frac{(z\overline{\phi})^k}{\alpha^k z^k} T^*_\phi(z^k).
\]

Proof. The proof is similar to the Hardy space case. For clarity, we include some details. Note that

\[
A_\alpha(z) = \left(\frac{1}{1 - \overline{\alpha}z} \right)^2 = \left(\sum_{k=0}^{n-1} \frac{\alpha^k z^k}{1 - \overline{\alpha}z} \right)^2
\]

\[
= \frac{1}{(1 - \overline{\alpha}z)^2} \left(\sum_{k=0}^{n-1} (k+1)\alpha^k z^k + \sum_{k=n}^{2n-2} (2n-k-1)\alpha^k z^k \right).
\]

Note also

\[
C^*_\phi f(\alpha) = \langle C^*_\phi f(z), A_\alpha(z) \rangle = (f(z), A_\alpha(\phi(z)))
\]

where the inner product \(\langle f, A_\alpha(\phi(z)) \rangle \) is on \(A^2(\mathbb{D}) \). Therefore

\[
C^*_\phi f(\alpha) = \left\langle f(z), \frac{1}{(1 - \overline{\alpha}L(z))^2} \left(\sum_{k=0}^{n-1} (k+1)\alpha^k z^k + \sum_{k=n}^{2n-2} (2n-k-1)\alpha^k z^k \right) \right\rangle
\]

\[
= \sum_{k=0}^{n-1} \frac{(k+1)\alpha^k}{(d - b\alpha)^2} \left\langle P \left[(cz + d)^2 \phi f(z) \right], \frac{1}{(1 - L^*(\alpha^n))z} \right\rangle
\]

\[
+ \sum_{k=n}^{2n-2} \frac{(2n-k-1)\alpha^k}{(d - b\alpha)^2} \left\langle P \left[(cz + d)^2 \phi f(z) \right], \frac{1}{(1 - L^*(\alpha^n))z} \right\rangle
\]

\[
= \sum_{k=0}^{n-1} \frac{(k+1)\alpha^k}{(d - b\alpha)^2} g_k(L^*(\alpha^n)) + \sum_{k=n}^{2n-2} \frac{(2n-k-1)\alpha^k}{(d - b\alpha)^2} g_k(L^*(\alpha^n)).
\]
where the fourth equality is by (2.2), and

\[g_k(z) = P \left[(cz + d)^2 \varphi^k f(z) \right] = T^*_k (cz + d)^2 \varphi^k f, \quad 0 \leq k \leq 2n - 2. \]

The formula (2.6) follows from the above calculation.

Example 2.6. Let \(\varphi(z) = \sqrt{\frac{1}{1-z^2}} \), where \(\sqrt{z} \) is with the branch cut of the interval \((-\infty, 0] \), then on Bergman space \(A^2(\mathbb{D}) \),

\[
C^*_\varphi \left(\frac{1}{(2z-1)^2} \right) C \frac{1}{2-z^2} T^*_\varphi (2-z)^2 + C \frac{1}{2-z^2} T^* (2z) + C \frac{1}{2-z^2} T^* (2-z).
\]

3. **Compositions of n-th root functions and rational functions**

We can combine \(n \)-th root functions with some rational functions. For simplicity, we will first state the idea for the square root function.

Proposition 2. Let \(\psi(z) \) be a nonvanishing analytic self-map of the disk. Then \(\varphi(z) = \sqrt{\psi(z)} \) is an analytic self-map of the disk for some branch cut of the square root function, and on the Hardy space \(H^2(\mathbb{D}) \),

\[
C^*_\varphi f(\alpha) = C^*_\psi f(\alpha^2) + \alpha C^*_\psi g(\alpha^2),
\]

where \(g(z) = P \left[\varphi(z) f(z) \right] \) and \(f(z) \in H^2(\mathbb{D}) \).

Proof. Note that by (2.4) with \(z \) replaced by \(\varphi(z) \),

\[
C^*_\varphi f(\alpha) = \langle f(z), K_\alpha(\varphi(z)) \rangle = \frac{1}{1 - \overline{\varphi} \varphi(z)} + \langle f(z), \frac{\overline{\alpha \varphi(z)}}{1 - \overline{\varphi} \varphi(z)} \rangle = C^*_\psi f(\alpha^2) + \alpha \left[C^*_\psi T^*_\psi f \right] (\alpha^2).
\]

The proof is complete.

The formulas for evaluating \(C^*_\varphi f(\alpha) \) for a rational symbol \(\psi \) were first derived in [15]. They are valid on some open subset of \(\mathbb{D} \); see also simple proofs and some refined interpretations of the formulas from [5].

We briefly recall some basic concepts following [5]. Let \(\hat{\mathbb{C}} \) denote the extended complex plane (i.e., the Riemann sphere). For a rational function \(\psi(z) \) with degree \(d \), associated with \(\psi(z) \) is its “exterior” map \(\psi_e(z) = \rho \circ \psi \circ \rho \), where \(\rho(z) = 1/z \) is the inversion of the unit circle. For each \(w \in \hat{\mathbb{C}} \), the inverse image \(\psi_e^{-1}(\{w\}) \) has, counting multiplicities, exactly \(d \) distinct points. If \(\psi_e^{-1}(\{w\}) \) has \(d \) distinct points, we say \(w \) is a regular value of \(\psi_e \). Since \(\psi_e \) is a rational function, all but finitely many points of \(\hat{\mathbb{C}} \) are regular values of \(\psi_e \). Let \(\text{reg}(\psi_e) \) denote the set of regular values of \(\psi_e \). Let \(\{\sigma_j(z)\}_{j=1}^d \) be \(d \) distinct branches of \(\psi_e \) which are defined on some neighborhood of any regular point of \(\psi_e \) in \(\mathbb{D} \). Then the formula for \(C^*_\varphi f(\alpha) \) is as follows [15, 5].

Theorem 3.1. Let \(\psi(z) \) be a rational function of degree \(d \) that is also a self-map of \(\mathbb{D} \). Suppose \(z_0 \in \mathbb{D} \) is a regular value of \(\psi_e \) and \(V \subseteq \mathbb{D} \) is any connected neighborhood
Theorem 3.2. Consider a function $\psi(z)$, as defined in the statement of Theorem 3.1. In addition, assume $\psi(z)$ is nonvanishing on \mathbb{D}. Let $\varphi(z) = \sqrt[n]{\psi(z)}$ be an analytic self-map of the disk for some branch cut of the square root function. Then, for any $f \in H^2(\mathbb{D})$,

(a) If $\psi(\infty) \neq \infty$, then for all $z^2 \in V \setminus \{1/\psi(\infty)\},$

$$C^*_{\varphi} f(z) = \frac{f(0)}{1 - \psi(\infty)z^2} + z^2 \sum_{j=1}^{d} \frac{\sigma_j(z^2)}{\sigma_j(z)} f(\sigma_j(z^2))$$

(b) If $\psi(\infty) = \infty$, then for all $z \in V, f \in H^2(\mathbb{D})$

$$C^*_{\psi} f(z) = \begin{cases}
\sum_{j=1}^{d} \frac{\sigma_j(z^2)}{\sigma_j(z)} f(\sigma_j(z^2)) & \text{if } z \neq 0 \\
 f(0) & \text{if } z = 0
\end{cases}$$

Combining Proposition 2 with the above theorem, we have the following result.

Theorem 3.2. Consider a function $\psi(z)$, as defined in the statement of Theorem 3.1. In addition, assume $\psi(z)$ is nonvanishing on \mathbb{D}. Let $\varphi(z) = \sqrt[n]{\psi(z)}$ be an analytic self-map of the disk for some branch cut of the square root function. Then, for any $f \in H^2(\mathbb{D})$,

(a) If $\psi(\infty) \neq \infty$, then for all $z^2 \in V \setminus \{1/\psi(\infty)\},$

$$C^*_{\varphi} f(z) = \frac{f(0)}{1 - \psi(\infty)z^2} + z^2 \sum_{j=1}^{d} \frac{\sigma_j(z^2)}{\sigma_j(z)} f(\sigma_j(z^2)) + \frac{zg(0)}{1 - \psi(\infty)z^2} + z^3 \sum_{j=1}^{d} \frac{\sigma_j(z^2)}{\sigma_j(z^2)} g(\sigma_j(z^2))$$

where $g(z) = P \left[\varphi(z) f(z) \right]$.

(b) If $\psi(\infty) = \infty$, then for all $z^2 \in V$,

$$C^*_{\psi} f(z) = \begin{cases}
\sum_{j=1}^{d} \frac{\sigma_j(z^2)}{\sigma_j(z)} f(\sigma_j(z^2)) + z^3 \sum_{j=1}^{d} \frac{\sigma_j(z^2)}{\sigma_j(z^2)} g(\sigma_j(z^2)) & \text{if } z \neq 0 \\
 f(0) & \text{if } z = 0
\end{cases}$$

There is a more general way to compose functions. Namely, let $\varphi = \omega \left(\sqrt[n]{\psi(z)} \right)$ where ω and ψ are two rational self-maps of \mathbb{D}. Furthermore, $\psi(z)$ is nonvanishing, so $\sqrt[n]{\psi(z)}$ is a well-defined self-map of \mathbb{D}. Then

$$C^*_{\varphi} = C^*_{\sqrt[n]{\psi(z)}} C^*_{\omega(z)}$$

Combining the formulas of $C^*_{\omega(z)}$ and $C^*_{\sqrt[n]{\psi(z)}}$ as in above two theorems will yield a formula for C^*_{φ} (quite complicated, though). However, even when both ω and ψ are linear fractional maps, as seen by the formula in Theorem 2.3, this approach leads to a formula for C^*_{φ} containing terms such as

$$T_{\psi_1} C_{\varphi_1} T_{\omega_1} T_{\psi_2} C_{\varphi_2} T_{\omega_2}.$$

It is intriguing that, by working directly with the reproducing kernel, we get a simpler formula.

Theorem 3.3. Let $L(z) = \frac{az + b}{cz + d}$ and $L_1(z) = \frac{a_1 z + b_1}{c_1 z + d_1}$ be two linear fractional self-maps of \mathbb{D} such that both $\sqrt[n]{L(z)}$ and $\varphi(z) = L_1(\sqrt[n]{L(z)})$ are self-maps of the disk. Then, on the Hardy space $H^2(\mathbb{D})$,

$$C^*_{\varphi(z)} = \sum_{k=0}^{n-1} T_{(d_1 - b_1 z)(z - b_1(z))^{n-k}} C_{L_1(z)^n} T_{(c_1 z + d_1)(cz + d) L(z)^k/n}.$$
On Bergman space $A^2(\mathbb{D})$,

$$C^*_{\varphi(z)} = \sum_{k=0}^{n-1} T \frac{(k+1)T_1(z)z^k}{2n-k} \frac{C_{\varphi(z)}}{2n-k} + \sum_{k=n}^{2n-2} T \frac{(2n-k)z^k}{2n-k} \frac{C_{\varphi(z)}}{2n-k}.$$

Proof. As in the proof of Theorem 2.3, the formula follows from the following computation of the kernel function:

$$K_\alpha(z) = \frac{1}{\sqrt{\varphi(z)}} = \frac{1}{1 - \alpha L_1(\sqrt{L(z)})} = \frac{1}{d_1 - b_1 \alpha(1 - L_1(\sqrt{L(z)}) \frac{L_1(z)^k}{\sqrt{L(z)^k}} = \frac{1}{d_1 - b_1 \alpha}\sum_{k=0}^{n-1} \frac{L_1(z)^k}{1 - \alpha L_1(\sqrt{L(z)})^k}.$$

where the third equality is by (2.2), the fourth equality is by (2.4) with α replaced by $L_1(\alpha)$, and the fifth equality is by (2.2) again — using $L_1(\alpha)^n$ in place of α. The proof on $A^2(\mathbb{D})$ is similar by combining the above computation and the computation in the proof of Proposition 1.

Example 3.4. Let

$$\varphi(z) = \frac{1}{2 - \sqrt{\frac{1-z}{2}}} = L_1(\sqrt{L(z)})$$

Then, on Hardy space $H^2(\mathbb{D})$,

$$C^*_{\varphi(z)} = T \frac{z-1}{2-\sqrt{\frac{1-z}{2}}} C \frac{1}{2-\sqrt{\frac{1-z}{2}}} + T \frac{1}{2-\sqrt{\frac{1-z}{2}}} C \frac{1}{2-\sqrt{\frac{1-z}{2}}}$$

On Bergman space $A^2(\mathbb{D})$,

$$C^*_{\varphi(z)} = T \frac{z-1}{2-\sqrt{\frac{1-z}{2}}} C \frac{1}{2-\sqrt{\frac{1-z}{2}}} + T \frac{1}{2-\sqrt{\frac{1-z}{2}}} C \frac{1}{2-\sqrt{\frac{1-z}{2}}}$$

4. Inverse functions of finite Blaschke products

Note that \sqrt{z} cannot be made into an analytic self-map of the disk, but $\sqrt{L(z)}$ is an analytic self-map of the disk for any nonvanishing linear fractional map $L(z)$. The n-th root function $\sqrt[n]{z}$ can be thought as an inverse of z^n. Note that z^n is an inner function. In this section we extend the earlier results to get a formula for the adjoint of a composition operator whose symbol is an inverse function of a finite Blaschke product. The key is a formula similar to (2.4) for a finite Blaschke product. Incidentally, we remark, a (not so explicit) formula for $C^*_{\varphi(z)}$ where φ is a finite Blaschke product was obtained by McDonald [20] before the general case of rational symbols [15, 5].
Let $\beta \in \mathbb{D}$ and let $\varphi_\beta(z)$ be the automorphism of the disk,
\begin{equation}
\varphi_\beta(z) = \frac{\beta - z}{1 - \beta z}, \quad z \in \mathbb{D}.
\end{equation}
For a finite Blaschke product $\theta(z)$, we have the following formula. This formula is also useful in proving an operator identity involving m-isometries, see Lemma 2.2 in [13].

Lemma 4.1. Let $\theta(z) = \lambda \prod_{k=0}^{n-1} \varphi_{\beta_k}(z)$ be a finite Blaschke product with $|\lambda| = 1$. Then
\[
1 - \overline{\theta(\alpha)}\theta(z) = (1 - |\alpha|^2) \prod_{k=0}^{n-1} \overline{\theta_k(\alpha)} \theta_k(z)
\]
for some analytic (rational) functions $\theta_k(z)$.

Proof. By a direct calculation,
\[
1 - \overline{\varphi_{\beta(\alpha)}(\alpha)}\varphi_{\beta}\varphi(z) = \left(1 - |\beta|^2\right) \left(1 - \overline{\alpha z}\right)^{-1} \left(1 - \overline{\beta z}\right)^{-1}.
\]
Now for a finite Blaschke product $\theta(z) = \lambda \prod_{k=0}^{n-1} \varphi_{\beta_k}(z)$, let
\begin{equation}
\theta_0(z) = \left(1 - |\beta_0|^2\right)^{1/2} \left(1 - \overline{\beta_0 z}\right)^{-1},
\end{equation}
\begin{equation}
\theta_k(z) = \left(1 - |\beta_k|^2\right)^{1/2} \left(1 - \overline{\beta_k z}\right)^{-1} \prod_{j=0}^{k-1} \varphi_{\beta_j}(z), \quad k = 1, \ldots, n - 1.
\end{equation}
Then
\[
1 - \overline{\theta(\alpha)}\theta(z) = 1 - \prod_{k=0}^{n-1} \overline{\varphi_{\beta_k}(\alpha)} \varphi_{\beta_k}(z)
\]
\[
= \prod_{k=0}^{n-1} \prod_{j=0}^{k-1} \left(1 - \overline{\varphi_{\beta_k}(\alpha)} \varphi_{\beta_k}(z)\right) \prod_{j=1}^{k-1} \varphi_{\beta_j}(z)
\]
\[
= (1 - \overline{\alpha z}) \sum_{k=0}^{n-1} \overline{\theta_k(\alpha)} \theta_k(z).
\]
This completes the proof. \qed

As shown in Proposition 12 in [5], the inverse branch of $\theta(z)$ is in general not defined on the whole unit disk \mathbb{D}. But as in the case $\theta(z) = z^n$, if $\sigma(z)$ is an inverse branch of $\theta(z)$ defined on an open subset of the disk, $\sigma(L(z))$ is a self-map of the disk if $L(z)$ maps the open unit disk into that open subset. Let $\sigma(z)$ be an inverse branch of $\theta(z)$ such that $\sigma(L(z))$ is a self-map of the disk. Then we have the following formula for the adjoint of $C_{\sigma(L(z))}$:

Theorem 4.2. Let $\theta(z)$ be a finite Blaschke product. Let $\sigma(L(z))$ be a self-map of the disk such that $\theta(\sigma(L(z))) = L(z)$. Then on the Hardy space $H^2(\mathbb{D})$,
\begin{equation}
C_{\sigma(L(z))}^* = \sum_{k=0}^{n-1} T_{\theta_k(z)}^* C_{\overline{\theta(\alpha)}} \overline{T_{\theta_k(z)}^*} \overline{T_{(cz+d)\theta_k(\sigma(L(z)))}}^\ast
\end{equation}
Proposition 3. Let \(\theta(z) \) be a finite Blaschke product. Let \(\sigma(L(z)) \) be a self-map of the disk such that \(\theta(\sigma(L(z))) = L(z) \). Then on the Bergman space \(A^2(\mathbb{D}) \),

\[
C_{\sigma(L(z))}^* f(\alpha) = \left\langle C_{\sigma(L(z))}^* f(z), K_\alpha(z) \right\rangle = \left\langle f(z), K_\alpha(\sigma(L(z))) \right\rangle
\]

Then

\[
C_{\sigma(L(z))}^* f(\alpha) = \sum_{k=0}^{n-1} \frac{\theta_k(\alpha)}{1 - \theta(\alpha)\theta(z)} = \frac{1}{1 - \alpha z} = K_\alpha(z).
\]

Then

\[
C_{\sigma(L(z))}^* f(\alpha) = \left\langle C_{\sigma(L(z))}^* f(z), K_\alpha(z) \right\rangle = \left\langle f(z), K_\alpha(\sigma(L(z))) \right\rangle
\]

\[
= \sum_{k=0}^{n-1} \frac{\theta_k(\alpha)}{1 - \theta(\alpha)\theta(z)} = \sum_{k=0}^{n-1} \frac{\theta_k(\alpha)}{1 - \theta(\alpha)\theta(z)}
\]

\[
= \sum_{k=0}^{n-1} \frac{\theta_k(\alpha)}{c - d \theta(\alpha)} = \frac{\theta_k(\alpha)}{c - d \theta(\alpha)}
\]

\[
g_k(z) = P \left[(cz + d)\theta_k(\sigma(L(z)))f(z) \right], \quad \frac{1}{1 - L^*(\theta(\alpha))z}
\]

where the fifth equality is by (2.2), and

\[
g_k(z) = P \left[(cz + d)\theta_k(\sigma(L(z)))f(z) \right] = T_{(cz+d)\theta_k(\sigma(L(z)))}^* f.
\]

The formula (4.3) follows from the above calculation. \(\square \)

We have a similar result on the Bergman space. The proof is by a combination of ideas from the proofs of Proposition 1 and Theorem 4.2.

Proposition 3. Let \(\theta(z) \) be a finite Blaschke product. Let \(\sigma(L(z)) \) be a self-map of the disk such that \(\theta(\sigma(L(z))) = L(z) \). Then on the Bergman space \(A^2(\mathbb{D}) \),

\[
(4.4) \quad C_{\sigma(L(z))}^* = \sum_{k=0}^{n-1} T_{\theta_k(z)} \cdot \frac{\theta_k(\alpha)}{c - d \theta(\alpha)}
\]

\[
+ 2 \sum_{k=0}^{n-1} \sum_{\ell=1}^{n-1} T_{\theta_k(z)\theta_{\ell}(z)} \cdot \frac{\theta_k(\alpha)}{c - d \theta(\alpha)}
\]

We next give an example to illustrate the above results.

Example 4.3. We chose the degree 2 Blaschke product to be the same one used in Example 6 of [5]. Let

\[
\theta(z) = \frac{1 - 2z}{2 - z}.
\]

Then the two branches of the inverses of \(\theta(z) \) are

\[
\sigma_1(z) = \frac{1 + z + \sqrt{\Delta(z)}}{4} \quad \text{and} \quad \sigma_2(z) = \frac{1 + z - \sqrt{\Delta(z)}}{4},
\]

where \(\Delta(z) = z^2 - 14z + 1 \). If we take the square root function in these formulas to have its branch cut along the positive real axis, then \(\sqrt{\Delta(z)} \) is not analytic on whole unit disk. However, for \(L(z) = (2 - z)/3, \sqrt{\Delta(L(z))} \) is analytic in the disk, since

\[
\Delta(L(z)) = \left(\frac{2 - z}{3} \right)^2 - 14 \left(\frac{2 - z}{3} \right) + 1 = \frac{1}{9}(z^2 + 38z - 71)
\]
has two roots, approximately, 1.78 and -39.78, so $\sqrt{\Delta(L(z))}$ is analytic on the complex plane cut by the rays $(-\infty, -39.78]$ and $[1.78, \infty)$. Note that
\[
\varphi = \sigma_1(L(z)) = \frac{5 - z + \sqrt{z^2 + 38z - 71}}{12}, \quad \theta_0(z) = 1, \quad \theta_1(z) = \frac{\sqrt{3z}}{2 - z}.
\]

Therefore on the Hardy space $H^2(\mathbb{D})$,
\[
C_{\varphi}^* = T_\frac{9}{3 - 2\theta(z)} C - \frac{\theta_1(z)}{3 - 2\theta(z)} + T_\frac{\theta_1(z)}{3 - 2\theta(z)} C - \frac{\theta_1(z)}{3 - 2\theta(z)} T_{3\theta_1(\sigma_1(L(z)))}^*.
\]

On the Bergman space $A^2(\mathbb{D})$,
\[
C_{\varphi}^* = T_{\frac{9}{3 - 2\theta(z)}} C - \frac{\theta_1(z)}{3 - 2\theta(z)} + T_{\frac{\theta_1(z)}{3 - 2\theta(z)}} C - \frac{\theta_1(z)}{3 - 2\theta(z)} T_{3\theta_1(\sigma_1(L(z)))}^* + 2T_{\frac{\theta_1(z)}{3 - 2\theta(z)}} C - \frac{\theta_1(z)}{3 - 2\theta(z)} T_{3\theta_1(\sigma_1(L(z)))}.
\]

REFERENCES

Mathematics Department, California Polytechnic State University, San Luis Obispo

E-mail address: cgu@calpoly.edu

Mathematics Department, University of Connecticut

E-mail address: erin.rizzie@uconn.edu

Mathematics Department, California Polytechnic State University, San Luis Obispo

E-mail address: jshapiro@calpoly.edu