|
Research Interests: Riemannian Geometry, Differential Topology
Ph.D. Thesis:
J. Borzellino. Riemannian Geometry of Orbifolds, Spring 1992, Ph.D. Thesis UCLA. (PDF)
Publications:
- J. Borzellino. Orbifolds of Maximal Diameter, Indiana Univ. Math. J. 42 (1993), 37--53. (PDF)
- J. Borzellino. Pinching Theorems for Footballs and Teardrops of Revolution, Bulletin of the Australian Mathematical Society, 49 (1994), 353--364. (PDF)
- J. Borzellino and S. Zhu. The Splitting Theorem for Orbifolds, Illinois Journal of Mathematics, 38 (1994), 679--691. (PDF)
- J. Borzellino and B. Lorica. The Closed Geodesic Problem for Compact Riemannian 2-Orbifolds, Pacific Journal of Mathematics, 175 (1996), 39-46. (PDF)
- J. Borzellino. Orbifolds With Lower Ricci Curvature Bounds, Proceedings of the American Mathematical Society, 125(10) (1997), 3011-3018. (PDF)
- J. Borzellino. Whose Limit is it Anyway?, PRiMUS (Problems, Resources, and Issues in Mathematics Undergraduate Studies), XI (2001) no. 3, 265274. (PDF)
- J. Borzellino and V. Brunsden. Determination of the Topological Structure of an Orbifold by its Group of Orbifold Diffeomorphisms, Journal of Lie Theory, 13 (2003) no. 2, 311327. (PDF)
- J. Borzellino and V. Brunsden. Orbifold Homeomorphism and Diffeomorphism Groups, in "Infinite Dimensional Lie Groups in Geometry and Representation Theory", World Scientific, (2002), 116137. (PDF)
- J. Borzellino, Christopher R. Jordan-Squire, Gregory C. Petrics and
D. Mark Sullivan. On the Existence of Infinitely Many Closed Geodesics on Orbifolds of Revolution, unpublished expository article. (PDF)
- J. Borzellino, Christopher R. Jordan-Squire, Gregory C. Petrics and
D. Mark Sullivan. Closed Geodesics on Orbifolds of Revolution, Houston Journal of Mathematics, 33 (2007) no. 4, 1011-1025. (PDF)
- J. Borzellino and V. Brunsden. A Manifold Structure for the Group of Orbifold Diffeomorphisms of a Smooth Orbifold, Journal of Lie Theory, 18 (2008) no. 4, 9791007. (PDF)
- J. Borzellino and V. Brunsden. The Stratified Structure of Spaces of Smooth Orbifold Mappings, preprint. (PDF)
- J. Borzellino and M. Sherman. When is a Trigonometric Polynomial not a Trigonometric Polynomial?, The American Mathematical Monthly, 119 (2012) no. 5, 422-425. (PDF)
- J. Borzellino and V. Brunsden. Elementary Orbifold Differential Topology, Topology and its Applications, 159 (2012), 3583-3589. dx.doi.org/10.1016/j.topol.2012.08.032. (PDF)
|
|
|