Question 1 Prove the following three claims mentioned in the book on page 7. Use the analogous results for open subsets of \mathbb{R}^k on pages 3-4 of the text and mimic ideas in the proof on page 6 that for a smooth map $f : M \rightarrow N$ of smooth manifolds with $f(x) = y$, the map $Df_x : T_xM \rightarrow T_yN$ is a well-defined linear map.

a) (Chain Rule) If $f : M \rightarrow N$ and $g : N \rightarrow P$ are smooth, with $f(x) = y$, then $D(g \circ f)_x = Dg_y \circ Df_x$.

b) If I is the identity map of M, then DI_x is the identity map of T_xM. More generally, if $M \subset N$ with inclusion map i, then $T_xM \subset T_xN$ with inclusion map Di_x.

c) If $f : M \rightarrow N$ is a diffeomorphism, then $Df_x : T_xM \rightarrow T_yN$ is a vector space isomorphism. In particular, the dimension of M is equal to the dimension of N.