Math 143 Sample Problems for Exam 2

Question 1 Find the interval of convergence of the power series:

\[\sum_{n=0}^{\infty} \frac{(-1)^n (3x + 1)^n}{4^{2n}(n+1)} \]

Don’t forget to check the endpoints!

Question 2 Approximate the definite integral \(\int_{0}^{1} x \cos(3x^3) \, dx \) by using the first three non-zero terms of the Maclaurin series for \(f(x) = x \cos(3x^3) \). What is the maximum error in your approximation? You will need to know that \(\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!} \).

Question 3 Find the Taylor series for \(f(x) = \cos x \) centered at the point \(x = \pi/4 \).

Question 4 For the parametric curve \(x = e^t \cos t + \sin t, \quad y = e^t \cos t - \sin t \), find the equation of the tangent line at the point where \(t = \pi/4 \). Find the length of the curve from \(t = 0 \) to \(t = \pi/2 \). Set up, but do not evaluate an integral that represents the area of the surface of revolution gotten by rotating the curve from \(t = 0 \) to \(t = \pi/2 \) about the \(y \)-axis.

Question 5 Find the area enclosed by the cardioid \(r = 2 + 2 \cos \theta \). Find the equation of the tangent line to the cardioid at the point when \(\theta = \pi/6 \).

Question 6 Find the length of the spiral \(r = 3^{-\theta} \) from \(\theta = -\pi/2 \) to \(\theta = \pi/2 \).

Question 7 Find the equation of the sphere whose diameter has endpoints \((1, 2, 3)\) and \((-1, 4, -6)\).

Question 8 Something from sections 13.2.