Math 404 Graded Homework 2
Name:__________________________
Due April 29, 2003

To receive full credit, you must show all work.

Question 1 This is exactly problem 11 from section 2.2 in the book. Prove that a straight line is the shortest curve that joins two points in \(\mathbb{R}^3 \). Do this the following way: Let \(c : [a, b] \rightarrow \mathbb{R}^3 \) be an arbitrary curve from \(p = c(a) \) to \(q = c(b) \). Let \(u = (q - p)/\|q - p\| \).

a) Show that if \(\sigma \) is a straight line segment from \(p \) to \(q \), say \(\sigma(t) = (1 - t)p + tq, 0 \leq t \leq 1 \), then \(L(\sigma) = d(p, q) \).

b) Cauchy-Schwartz implies that \(\|c'\| \geq c' \cdot u \). Use this to deduce that \(L(c) \geq d(p, q) \).

c) Show that if \(L(c) = d(p, q) \), then \(c \) is a straight line segment.

Question 2 Now we are going to investigate the same problem using the calculus of variations. Very often in math or physics, one is interested in minimizing or maximizing a functional. For our purposes a functional \(F \) will be a function from some set of functions to \(\mathbb{R} \). These are often given by integrals. For example, consider the set \(C \) of all smooth curves \(c \) in the plane joining \(p \) and \(q \) and parametrized on the interval \([a, b] \). Then the length functional \(L \) is

\[
L(c) = \int_a^b \|c'\| \, dt
\]

If we further assume that \(c \) is the graph of a function \(y = c(t) \) joining the points \(p = (a, c(a)) \) to \(q = (b, c(b)) \), then \(L \) can be written as

\[
L(c) = \int_a^b \sqrt{1 + (c')^2} \, dt
\]

To find the shortest curve joining \(p \) to \(q \), we would like to “differentiate \(L \) with respect to \(c \)” and set the result equal to 0 to find the “critical curves” which we hope are minimums or shortest curves (geodesics).

Here is the general framework in which to do this. Consider a suitably differentiable function \(F : \mathbb{R} \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R} \), given by \(F(t, x, y) \). We wish to find the maxima/minima of the functional

\[
J(c) = \int_a^b F(t, c(t), c'(t)) \, dt
\]

(To get the length functional, let \(F = \sqrt{1 + y'^2} \).)

Now we consider a variation of \(c \) with endpoints fixed, that is, a function

\[
\alpha : (-\varepsilon, \varepsilon) \times [a, b] \rightarrow \mathbb{R}
\]

such that \(\alpha(0, t) = c(t) \) and \(\alpha(u, a) = p \) and \(\alpha(u, b) = q \) for all \(u \in (-\varepsilon, \varepsilon) \). Note that for fixed \(u = u_0 \), \(\alpha(u_0, t) \) is just a curve joining \(p \) to \(q \). See the picture. As \(u \) varies we get a family of curves which “pass through” \(c \) when \(u = 0 \). Denote the \(u \)-th curve by \(\alpha_u(t) \).
a) Now it’s your turn to do some stuff. For a variation α, show that

$$
\frac{d}{du} \left(J(\alpha(u)) \right) \bigg|_{u=0} = \frac{d}{du} \left(\int_a^b F(t, \alpha(u, t), \frac{\partial \alpha}{\partial t}(u, t)) \, dt \right) \bigg|_{u=0}
$$

$$
= \int_a^b \left[\frac{\partial \alpha}{\partial u}(0, t) \frac{\partial F}{\partial x}(t, c(t), c'(t)) + \frac{\partial^2 \alpha}{\partial u \partial t}(0, t) \frac{\partial F}{\partial y}(t, c(t), c'(t)) \right] \, dt
$$

Since mixed partials are equal, $\frac{\partial^2 \alpha}{\partial u \partial t} = \frac{\partial^2 \alpha}{\partial t \partial u}$, apply integration by parts to the second term in the integrand and use the fact that endpoints are fixed to conclude

$$
\frac{d}{du} \left(J(\alpha(u)) \right) \bigg|_{u=0} = \int_a^b \frac{\partial \alpha}{\partial u}(0, t) \left[\frac{\partial F}{\partial x}(t, c(t), c'(t)) - \frac{d}{dt} \left(\frac{\partial F}{\partial y}(t, c(t), c'(t)) \right) \right] \, dt
$$

b) Thus critical points of J correspond to curves c with

$$
\frac{\partial F}{\partial x}(t, c(t), c'(t)) - \frac{d}{dt} \left(\frac{\partial F}{\partial y}(t, c(t), c'(t)) \right) = 0
$$

This is called the Euler-Lagrange equation of the functional J. Use this to show that straight lines are critical points of the length functional L. ($F(t, x, y) = \sqrt{1 + y'^2}$.) To show these are actually minima we would have to compute the second derivative of J with respect to u and use the second derivative test. This can be done, but is a big mess!

c) Suppose now that you wanted to find a curve c given as a graph $y = c(t)$ over $[a, b]$, for which the surface of revolution obtained by rotating c about the t–axis has minimal area amongst all curves joining $(a, c(a))$ to $(b, c(b))$. To make the problem interesting we assume that $c(t) > 0$ on $[a, b]$. This will give a so-called minimal surface of revolution. What should the function F be, so that the corresponding functional J represents the area of the surface of revolution? Deduce that a curve c that generates a minimal surface of revolution satisfies the non-linear differential equation

$$
1 + \left(\frac{dc}{dt} \right)^2 - c(t) \left(\frac{d^2 c}{dt^2} \right) = 0
$$

Miraculously, this differential equation can be solved since the independent variable t is missing using some standard tricks. See, for example, the Boyce–DiPrima book on differential equations. It turns out that the solution to this differential equation is $c(t) = C \cosh \left(\frac{t + K}{C} \right)$, where C and K are constants. The resulting surfaces are called catenoids.