Chapter 1

Page 12, #13 the figure on the right should have the angle ϕ labeled as the supplementary angle to β along the vertical.

Page 12, line 11↑ the line should read “Note that $\cos \phi \leq 0$. Therefore, $0 \leq -d/(6 \cos \phi) \leq \rho \leq d/2$. So far, ...”.

Chapter 2

Page 29, #7(b) the matrix of partial derivatives should be

$$
\begin{bmatrix}
e^y & xe^y - \sin y \\
1 & 0 \\
1 & e^y
\end{bmatrix}
$$

Chapter 4

Page 70, #20 there should be a space before “and” in the third line.

Page 72, #12(a) the last line should read “$(d/dt)(T(t)) = (d/dt)(1)$, i.e., $2T(t) \cdot T'(t) = 0$, which implies that $T(t) \cdot T''(t) = 0$.”

Page 73, line 5 should read “and then formally compute”.

Chapter 5

Page 95, line 12 should read “Cauchy sequence. A Cauchy sequence is a sequence whose terms . . .”.
Chapter 6

Page 106, line 6↑ should read “... applying T to the parallelogram described by $q = p + \lambda v + \mu w$...”.

Page 106, line 1↑ the last sentence should read “Thus, the image of T is a parallelogram in \mathbb{R}^2.”

Page 115, line 14 should read “... if the limits of integration are infinite. The difference here ...”.

Page 119, line 3 “The desired volume ...” should be “The desired region ...”.

Page 120, line 2↑ should read “The average temperature is attained wherever $32d^2 = 32$, i.e., $d = 1$. Thus, ...”.

Page 121, line 2 should read “The inequality $(x-1)^2 + y^2 + z^2 \leq 1$ describes a ball ...”.

Page 121, line 3↑ should read “Jacobian $\rho^2 \sin \phi$. We get”.

Chapter 7

Page 125, line 8 should read “piecewise continuously differentiable. The integration ...”.

Page 127, lines 3 and 4 x_i should be x_j.

Page 128, line 1 should read “Physical interpretation. The line integral is most commonly interpreted as the work ...”.

Page 130, line 3 u should be u.

Page 135, line 13 should read “which becomes $1/\sqrt{1-r^2}$ in polar coordinates. Remembering ...”.

Page 135, line 9↑ should read “... the volume of the coupler is $32\pi/3 - (32\pi/3 - 4\pi/\sqrt{3}) = 4\pi/\sqrt{3}$.”

Page 144, line 2 the comma after the word “line” should be omitted.

Page 144, line 13 \sin should be \sin.

Chapter 8

Page 149, line 9 “... a surface integral;” should be “... a double integral;”.

Page 153, line 16 should read “... over the wire (assuming the wire itself is not deformed).”
Page 158, line 1↑ should read “G or any gradient may be added to G, and $\nabla \times G$ would still be equal to F.”

Page 162, line 3 should read “It is obvious that $\|\mathbf{r}\| = \|\mathbf{r}\| \ldots$.”

Page 163, line 5 should read “The integrand can be rewritten according to vector identity 8 on page 283 and the fact that $\nabla \times \mathbf{E} = 0$, as”

Page 169, #10(c) should read “Suppose the F in (a) is a force field \ldots”.

Chapter 9

Page 172, #4(b) should read “Evaluate $\int_c \mathbf{F} \cdot d\mathbf{s}$ for the path \ldots”.

Page 174, #4 should read “Consider the system

\[
\begin{align*}
F_1(u, v, x, y) &= u^2 - v^2 + 2x + xy = 0 \\
F_2(u, v, x, y) &= 2u + 3v - 5x^2 = 0''.
\end{align*}
\]