Object-Oriented Finite Element Analysis

by

Graham Charles Archer

B.A.Sc. (University of Waterloo) 1985
M.A.Sc. (University of Waterloo) 1986

A dissertation submitted in partial satisfaction of the
requirements for the degree of
Doctor of Philosophy
in
Engineering-Civil Engineering
in the
GRADUATE DIVISION
of the
UNIVERSITY of CALIFORNIA at BERKELEY

Committee in charge:

Professor Christopher Thewalt, Chair
Professor Gregory Fenves
Professor James Demmel

1996
The dissertation of Graham Charles Archer is approved:

[Signatures and dates]

University of California at Berkeley

1996
Object-Oriented Finite Element Analysis

Copyright 1996

by

Graham Charles Archer
Abstract

Object-Oriented Finite Element Analysis

by

Graham Charles Archer

Doctor of Philosophy in Civil Engineering

University of California at Berkeley

Professor Christopher Thewalt, Chair

Over the last 30 years, the finite element method has gained wide acceptance as a general purpose tool for structural modeling and simulation. Typical finite element programs consist of several hundred thousand lines of procedural code, usually written in FORTRAN. The codes contain many complex data structures which are accessed throughout the program. For the sake of efficiency, the various components of the program often take advantage of this accessibility. For example, elements, nodes, and constraints may directly access the matrices and vectors involved in the analysis to obtain and transmit their state information. Thus they become intimately tied to the analysis data structures. This not only compounds the complexity of the components, by requiring knowledge of the data structures, but writers of new analysis procedures must be aware of all components that access the data. Modification or extension of a portion of the code requires a high degree of knowledge of the entire program. Solution procedures and modeling techniques become hard coded. The resulting code is inflexible and presents a barrier to practicing engineers and researchers.
Recoding these systems in a new language will not remove this inflexibility. Instead, a redesign using an object-oriented philosophy is needed. This abstraction forms a stable definition of objects in which the relationships between the objects are explicitly defined. The implicit reliance on another component's data does not occur. Thus, the design can be extended with minimal effort.

The application of object-oriented design to the finite element method has several advantages. The primary advantage is that it encourages the developer to abstract out the essential immutable qualities of the components of the finite element method. This abstraction forms the definition of objects that become the building blocks of the software. The class definitions encapsulate both the data and operations on the data, and provide an enforceable interface by which other components of the software may communicate with the object. Once specified, the object interfaces are frozen. It is possible to extend the interface later without affecting other code, but it should be noted that modifying the existing elements of an interface would require changes throughout the rest of the program wherever the interface was used. The internal class details that are needed to provide the desired interface are invisible to the rest of the program and, therefore, these implementation details may be modified without affecting other code. Thus, the design forms a stable base that can be extended with minimum effort to suit a new task. Due to the encapsulation enforcement inherent in object-oriented languages, new code will work seamlessly with old code. In fact old code may call new code.

The system design and a prototype implementation for the finite element method is presented. The design describes the abstraction for each class and specifies the interface for the abstraction. The implementation of a class, and the interaction between
objects must conform to the interface definition. Furthermore, recognizing that most
finite element development involves the addition of elements, new solution strategies,
or new matrix storage schemes, special care was taken to make these interfaces as
flexible as possible. The flexibility is provided by an object that is responsible for
automatically and efficiently transforming between coordinate systems to relieve
element and solution writers from this task. Elements authors are free to work in any
convenient coordinate system rather than requiring them to use the degrees-of-freedom
described by the modeler. Similarly, the writers of new solution strategies need not deal
with any model specific details or transformations, but rather are presented only with
the equations to be solved. The transformation from element coordinate systems to
final equations, including the effects of constraints and equation reordering, is
transparently handled without element or solution writer intervention. This separation
of tasks also allows analysis objects to use any matrix storage scheme that is convenient
for that particular method.

Approved: [Signature]

Christopher Thewalt
Table of Contents

List of Figures ... viii
List of Tables .. xi
1. Introduction ...1
 1.1 Problem ..1
 1.2 Objective ...3
 1.3 Object-Oriented Philosophy as a Solution..4
 1.4 Organization ...5
2. Literature Review ...7
 2.1 G. R. Miller, et al. ..10
 2.2 T. Zimmermann, et al. ...11
 2.3 Jun Lu, et al. ..12
 2.4 J. W. Baugh, et al...14
 2.5 H. Adeli, et al...15
 2.6 Discussion ..16
3. Methodologies ..19
 3.1 Design Formalisms ...20
 3.1.1 Design Intent...20
 3.1.2 Entity Relationship Diagrams...20
 3.1.3 Responsibility Description ...21
 3.1.4 Event Flow Diagram ..22
 3.1.5 Interface Definition Table ..23
 3.2 Implementation in C++ ..24
 3.2.1 Associations ..25
3.2.2 Inheritance ...26
3.2.3 Interfaces ...27
3.2.4 Libraries ..28
 3.2.4.1 Container Classes ..29
 3.2.4.2 Numerical Object Library ..30
3.3 Implementation Formalisms ...30
 3.3.1 C++ Interfaces ...31
 3.3.2 Demonstration Code ..32
4. Object Model Design ..35
 4.1 Top Level Objects ..38
 4.1.1 Model ...40
 4.1.2 Map ..42
 4.1.3 Analysis ..48
 4.2 Components of the Model ..52
 4.2.1 Degree of Freedom Group (Node)52
 4.2.2 Element ...59
 4.2.3 Material, Action/Deformation, and Constitutive Model65
 4.2.4 Constraint ...70
 4.2.5 Displacement Boundary Condition73
 4.2.6 Load Case ..75
 4.3 Handlers ...82
 4.3.1 Constraint Handler ...83
 4.3.2 Reorder Handler ...86
 4.3.3 Matrix Handler ...89
 4.4 Utility Objects ..91
 4.4.1 Geometry ..91
4.4.2 Numerical Objects ...95
4.4.3 Augmented Vector and Matrix Objects98

5. Behavior of High Level Classes ..104

5.1 Element ..106

5.1.1 Element Geometry ..106
5.1.2 Communication of Element Properties107
5.1.3 Element State ..109
5.1.4 Action/Deformation ...110
5.1.5 Resisting Force ...111

5.2 Constitutive Model ..111

5.2.1 Material Data ..112
5.2.2 Action/Deformation ...113
5.2.3 Constitutive Model State ..115

5.3 Analysis ...116

5.3.1 Analysis Constructors ...117
5.3.2 Analysis State ..119
5.3.3 Assembly ..120
5.3.4 Treatment of Boundary Conditions121

5.4 Constraint Handler ..124

5.4.1 Transformation Theory ...124
5.4.2 Selection of Analysis Unknowns ..126
5.4.3 Data Types ..127
5.4.4 Implementation ...128

5.5 Map ...133

5.5.1 Example ..133

5.5.1.1 Transformation of a Stiffness Matrix135
7.1.2 Ease of Modification and Extendibility ...232
7.2 Future Work ...233
References..236
Appendix: C++ Class Interfaces...240
List of Figures

Figure 3.1.2 Sample Entity Relationship Diagram ..21
Figure 3.1.4 Sample Event Flow Diagram (for a Node)...23
Figure 4.1 Overall Object Model..38
Figure 4.1.1a Entity Relationship Diagram for the Model Object..............................40
Figure 4.1.1b Event Flow Diagram for the Model Object ..41
Figure 4.1.2a Entity Relationship Diagram for the Map Object..............................43
Figure 4.1.2b Event Flow Diagram for the Map Object...46
Figure 4.1.3 Event Flow Diagram for Analysis Class..51
Figure 4.2.1a Entity Relation Diagram for Degree of Freedom Group Objects54
Figure 4.2.1b Event Flow Diagram for the Degree of Freedom Group Object56
Figure 4.2.2a Entity Relationship Diagram for the Element Object...........................61
Figure 4.2.2b Event Flow Diagram for the Element Objects.....................................64
Figure 4.2.3a Entity Relationship Diagram for the Constitutive Model67
Figure 4.2.3b Event Flow Diagram for the Constitutive Model Objects69
Figure 4.2.4a Entity Relationship Diagram for the Constraint Object.......................71
Figure 4.2.4b Event Flow Diagram for the Constraint Object...................................72
Figure 4.2.5a Entity Relationship Diagram for the Displacement Boundary
Condition Object...74
Figure 4.2.5b Event Flow Diagram for the Displacement Boundary Condition Object ..74
Figure 4.2.6a Entity Relationship Diagram for the Load Case Object76
Figure 4.2.6b Event Flow Diagram for the Load Case Object....................................78
Figure 4.2.6c Event Flow Diagram for the Prescribed Displacement Object78
Figure 4.2.6d Event Flow Diagram for the Degree of Freedom Load Object79
Figure 4.2.6e Event Flow Diagram for the Element Load Object..............................79
Figure 4.2.6f Event Flow Diagram for the Initial Element State Object80
Figure 4.3.1a Entity Relationship Diagram for the Constraint Handler Object84
Figure 4.3.1b Event Flow Diagram for the Constraint Handler Object...............86
Figure 4.3.2a Entity Relationship Diagram for the Reorder Handler Object87
Figure 4.3.2b Event Flow Diagram for the Reorder Handler Object88
Figure 4.3.3a Entity Relationship Diagram for the Matrix Handler Object89
Figure 4.3.3b Event Flow Diagram for the Matrix Handler Object90
Figure 4.4.1a Entity Relationship Diagram for the Geometry Objects92
Figure 4.4.1b Event Flow Diagram for the Geometry Objects93
Figure 4.4.2a Entity Relationship Diagram for the Numerical Objects96
Figure 4.4.3a Entity Relationship Diagram for the Augmented Vector and Matrix Objects...100
Figure 4.4.3b Event Flow Diagram for the Augmented Vector Object101
Figure 4.4.3c Event Flow Diagram for the Augmented Matrix Object101
Figure 5.5.1a Sample Problem ...134
Figure 5.5.1.1a Local Element Coordinate Systems and Transformation136
Figure 5.5.1.1b Nodal Coordinate Systems and Local-to-Nodal Transformation ...137
Figure 6.2a Entity Relationship Diagram for the Element Object164
Figure 6.2b Internal and External Degrees of Freedom for a Submodel166
Figure 6.3.1b Elastic-Perfectly-Plastic Moment-Rotation Relationship184
Figure 6.3.3a Entity Relationship Diagram for the 2D Beam Element with End
Hinges ..196
Figure 6.3.3b Nodal Coordinate Systems ..198
Figure 6.3.3c External Element Coordinate Systems ..198
Figure 6.3.3d Internal Measures of Deformation ..199
List of Tables

Table 3.1.5 Sample Object Definition Table (for an Element)24
Table 4.1.1 Model Interface Definition ..42
Table 4.1.2 Map Interface Definition ...47
Table 4.1.3 Analysis Interface Definition ..52
Table 4.2.1a Degree of Freedom Group Interface Definition57
Table 4.2.1b Node Interface Definition ..57
Table 4.2.1c Degree of Freedom Interface Definition ...58
Table 4.2.1d Degree of Freedom Description Interface Definition58
Table 4.2.1e Degree of Freedom Type Interface Definition58
Table 4.2.1f Scalar Degree of Freedom Interface Definition59
Table 4.2.1g Vector Degree of Freedom Interface Definition59
Table 4.2.2 Element Interface Definition ..65
Table 4.2.3a Constitutive Model Interface Definition ...69
Table 4.2.3b Action/Deformation Interface Definition ..70
Table 4.2.3c Material Interface Definition ..70
Table 4.2.5 Displacement Boundary Condition Interface Definition75
Table 4.2.6a Load Case Interface Definition ..81
Table 4.2.6b Load Interface Definition ...81
Table 4.2.6c Prescribed Displacement Interface Definition82
Table 4.2.6d Initial Element State Interface Definition ...82
Table 4.2.6e Time Function Interface Definition ..82
Table 4.3.1 Constraint Handler Interface Definition ...86
Table 4.3.3 Matrix Handler Interface Definition ...90
Table 4.4.1a Coordinate System Interface Definition ..94
<table>
<thead>
<tr>
<th>Table reference</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4.1b</td>
<td>Point Interface Definition</td>
<td>94</td>
</tr>
<tr>
<td>4.4.1c</td>
<td>Geometric Vector Interface Definition</td>
<td>94</td>
</tr>
<tr>
<td>4.4.2a</td>
<td>Vector Interface Definition</td>
<td>97</td>
</tr>
<tr>
<td>4.4.2b</td>
<td>Matrix Interface Definition</td>
<td>97</td>
</tr>
<tr>
<td>4.4.3a</td>
<td>Augmented Vector Interface Definition</td>
<td>102</td>
</tr>
<tr>
<td>4.4.3b</td>
<td>Augmented Matrix Interface Definition</td>
<td>102</td>
</tr>
<tr>
<td>4.4.3c</td>
<td>Transformation Interface Definition</td>
<td>103</td>
</tr>
<tr>
<td>4.4.3d</td>
<td>Transformation Description Interface Definition</td>
<td>103</td>
</tr>
<tr>
<td>5.5.1a</td>
<td>Mapping of Degrees of Freedom to Analysis Unknowns</td>
<td>135</td>
</tr>
<tr>
<td>6.2a</td>
<td>Element Interface Definition</td>
<td>165</td>
</tr>
<tr>
<td>6.3.1a</td>
<td>Constitutive Model Interface Definition</td>
<td>183</td>
</tr>
<tr>
<td>6.3.2a</td>
<td>Coordinate System Interface Definition</td>
<td>191</td>
</tr>
<tr>
<td>6.3.3a</td>
<td>Element Interface Definition</td>
<td>197</td>
</tr>
</tbody>
</table>
1. Introduction

Over the last 30 years, the finite element method has gained wide acceptance as a general purpose tool for the modeling and simulation of physical systems. It has become a crucial analytical technique in such diverse fields as structural mechanics, fluid mechanics, electro-magnetics, and many others. As finite element techniques evolve, the existing software systems must be modified. Therefore, finite element analysis programs must be flexible.

1.1 Problem

Typical finite element programs consist of several hundred thousand lines of procedural code, usually written in FORTRAN. The codes contain many complex data structures, which are accessed throughout the program. This global decreases the flexibility of the system. It is difficult to modify the existing codes and to extend the codes to adapt
them for new uses, models, and solution procedures. The inflexibility is demonstrated in several ways: 1) a high degree of knowledge of the entire program is required to work on even a minor portion of the code; 2) reuse of code is difficult; 3) a small change in the data structures can ripple throughout the system; 4) the numerous interdependencies between the components of the design are hidden and difficult to establish; 5) the integrity of the data structures is not assured.

For the sake of efficiency, the various components of the program often directly access the program's data structures. For example, elements, nodes, and constraints may need to access the matrices and vectors involved in the analysis to obtain and transmit their state information. This compounds the complexity of the components, by requiring knowledge of the program's data structures. Modification or extension to a component requires not only knowledge of the component at hand, but also a high degree of knowledge of the entire program.

The components of the system become intimately tied to the program's data structures. Access to the data structures occurs throughout the component, and easily becomes inseparable from the component's function. Since the layout of the data structures is unique to each program, the possibility of the reuse of the code in other systems is greatly diminished. Also, code from other programs is difficult to adapt for use within the system.

Since the data structures are globally accessible, a small change in the data structures can have a ripple effect throughout the program. All portions of the code that access the affected data structures must be updated. As a result, the layout of the data
structures tend to become fixed regardless of how appropriate they remain as the code evolves.

The components of the system become dependent on each other via their common access to the data structures. Little control can be placed on the access. As a result, these interdependencies are numerous. More importantly, they are implicit. One component can be completely unaware of another's reliance on the same data structure. Thus, when modification or extension to a component occurs, it is difficult to assure that all affected portions of the code are adjusted accordingly.

Access to the program's data structures is usually described by an interface. The interface may merely consist of a document describing the layout of the data, or may get as involved as a memory management tool that shields the data from the component routines. In either case, it is up the each programmer to honor the interface. The best laid plans are easily subverted for the sake of efficiency and ease of implementation.

1.2 Objective

Current finite element analysis software is inflexible and presents a barrier to practicing engineers and researchers. Recoding these systems in a new language will not remove this inflexibility. Instead, a redesign is needed. The objective of this dissertation is to provide a new architecture for finite element analysis software which results in an implementation that is manageable, extendible, and easily modified. The design will provide the Civil Engineering profession with a flexible tool that can be adapted to meet future requirements.
1.3 Object-Oriented Philosophy as a Solution

The application of object-oriented design has proven to be very beneficial to the development of flexible programs. The basis of object-oriented design is abstraction. The object-oriented philosophy abstracts out the essential immutable qualities of the components of the finite element method. This abstraction forms a stable definition of objects in which the relationships between the objects are explicitly defined. The implicit reliance on another component's data does not occur. Thus, the design can be extended with minimal effort.

The object-oriented paradigm provides four fundamental concepts [33, 9]; objects, classes, inheritance, and polymorphism. Software is organized into objects that store both its data and operators on the data. This permits developers to abstract out the essential properties of an object; those that will be used by other objects. This abstraction allows the details of the implementation of the object to be hidden, and thus easily modified. Objects are instances described by a class definition. Classes are related by inheritance. A subclass inherits behavior through the attributes and operators of the superclass. Polymorphism allows the same operation to behave differently in different classes and thus allows objects of one class to be used in place of those of another related class.

The premise of this research is that the previously outlined problems with current finite element programs can be eliminated by object-oriented design. The abstraction of the data into objects limits the knowledge of the system required to work on the code to
only the object of interest and the services other objects provide to the object of interest. Encapsulating the data and operations together isolates the classes and promotes the reuse of code. Code reuse is further enhanced by placing attributes common to several subclasses into the superclass, which is implemented once for all. Changes to a class affect only the class in question. There is no ripple effect. Interdependencies between the classes are explicitly laid out in the class interfaces. The number of dependencies are minimized and easily determined. Object-oriented languages enforce the encapsulation of the classes. The integrity of the data structures is assured by the language.

1.4 Organization

The layout of this dissertation is described below.

Chapter 2: Literature Review - provides a survey of the current literature regarding object-oriented finite element analysis design and programming.

Chapter 3: Methodologies - presents various methodologies that were used to design, implement, and document the object-oriented finite element analysis system.

Chapter 4: Object Model Design - provides a top-down, system level description of the object model design. The primary focus of the chapter is the description of abstractions for each class. The descriptions are given in terms of: the design intent, which describes how the class fits into the system; an entity-relationship
diagram, which shows how the class is associated with other classes; a responsibility description, which details the external and internal responsibilities of the class; an event flow diagram, which outlines the flow of information for the class; and the class interface definition table, which precisely defines the methods the class provides to the system.

Chapter 5: Behavior of High Level Classes - describes the behavior of several important high level objects in the system design. The chapter provides insight into the implementation, without focusing on the details. The objects described are the Element, the Constitutive Model, the Constraint Handler, the Map, and the Analysis.

Chapter 6: Extensions and Examples - contains extensions to the basic finite element analysis system described in the previous chapters, and examples that demonstrate the use of the system. The extensions demonstrate that the design is extendible. The examples include: a two-dimensional beam element with hinges at the ends; a type of substructuring using the element interface; several analysis types, including a nonlinear dynamic solution scheme using Newton-Raphson iteration; and an example of the use of the program.

Chapter 7: Conclusions and Future Work - summarizes the research. Both the significant findings and the direction of future research are discussed.

Appendix: C++ Class Interfaces - presents the public portions of the class interfaces in the implementation.
2. Literature Review

The application of object-oriented design has only come to the structural engineering community in the last several years. Several researchers began work in the late eighties, leading to publication in the nineties. In 1990, Fenves [17] described the advantages of object-oriented programming for the development of engineering software. Namely, that its data abstraction technique leads to flexible, modular programs with substantial code reuse.

One of the first detailed applications of the object-oriented paradigm to finite element analysis was published in 1990 by Forde, et al. [19]. The authors abstracted out the essential components of the finite element method (elements, nodes, materials, boundary conditions, and loads) into a class structure used by most subsequent authors. Also presented was a hierarchy of numerical objects to aid in the analysis. Other authors [18, 24, 29, 30] increased the general awareness of the advantages of object-oriented finite element analysis over traditional FORTRAN based approaches.
Some researchers have concentrated on the development of numerical objects. Scholz [34] gives many detailed programming examples for full vector and matrix classes. Zeglinski, et al. [40] provide a more complete linear algebra library including full, sparse, banded, and triangular matrix types. Also included is a good description of the semantics of operators in C++. Lu, et al. [22] present a C++ numerical class library with additional matrix types such as a profile matrix. They report efficiency comparable to a C implementation. Lu, et al. weakly argue against using the standard FORTRAN library LAPACK [2] by noting that "[LAPACK does] not embody the principles of encapsulation and data abstraction". Dongarra, et al. [13] present an object-oriented (C++) version of LAPACK named LAPACK++. It includes full, symmetric, and banded matrix types, and, according to the authors, the library can be extended to include other types. They report speed and efficiency competitive with native FORTRAN codes.

Rihaczek, et al. [31] present a short paper showing some abstractions for a heat transfer type problem. An interesting component of their design is the Assemblage class which coordinates the interaction between the model and the analysis. It contains the topological buildup, the constraints, and the loads. Chudoba, et al. [8] present a similar type of Connector class, to exchange data between elements and the analysis. The concept of an object responsible for the mapping between the model and the analysis is echoed by Lu, et al. [22, 7, 35].

One of the most complete treatments of material class, the modeling of the constitutive relationships, is presented by Zahlten, et al. [39, 20]. A particular material object is an assemblage of a yield surface object, a hardening rule object, a flow rule object, and an
algorithm to solve the initial value problem. The material object itself tracks the state of strain and directs the calculation of stress.

The focus of this dissertation is the development of a complete finite element system architecture. The remainder of this chapter presents five such systems that exist in the literature. Each architecture is evaluated with respect to the following significant criteria:

- **Nodes**: The information stored at the nodes and the manner in which the degrees of freedom are represented.
- **Elements**: Communication of element properties and use of constitutive models.
- ** Constitutive Models**: Integration with the element class.
- **Constraints**: Representation and handling of single and multi-point constraints.
- **Geometry**: Support for multiple coordinate systems, and representation of tensors.
- **Transformations**: The handling of data transformation from one basis to another.
- **Mapping from the Model to the Analysis**: The handling of the mapping between the model degrees of freedom and the final equations of equilibrium.
- **Analysis**: The types of analyses that are presented.
- **Numerical objects**: The set of classes provided for vector and matrix algebra.
2.1 G. R. Miller, et al.

G. R. Miller, et al. [26, 27, 28] present an object-oriented software architecture for use in nonlinear dynamic finite element analyses. The system is based on a coordinate-free geometry, which includes points, vectors, and tensors in three dimensions. No mention is made of supporting numerical work. No specific solution schemes are given, but the intention of the work is to allow for iterative element-by-element solution methods.

Transformations are handled by the coordinate-free geometry. Since all element and nodal properties are formulated without reference to a specific coordinate system, the elements and nodes do not participate in the transformation process. Elements report their properties in terms of geometric vectors and tensors. No information is given as to how these are transformed into numeric vectors and matrices for solution. Since the work is intended for an element-by-element solution algorithm, no mapping between the model and analysis equations of equilibrium is provided. As a result of the coordinate free geometry, an element can be used in 1, 2, or 3D problems, regardless of its internal representation.

The material objects provide the constitutive relationships to the elements. The relationship can be nonlinear and path dependent. The material is responsible for maintaining its own state. Stress and strain are reported as tensors.

The nodes are positioned in space using the geometric points. Nodes hold collections of scalar and vector degrees of freedom. The information stored at the degrees of freedom varies according to the solution scheme. Each scheme requires a different subclass of degree of freedom. Loads are applied to the nodes, and can vary with time.
Constraints also apply directly to the nodes by "absorbing force components from constrained directions" [28]. No details of the constraint handling procedure are given.

2.2 T. Zimmermann, et al.

T. Zimmermann, et al. [14, 15, 25, 2] have developed a software architecture for linear dynamic finite element analysis, with extensions to account for material nonlinearity. The nonlinear extension required the redefinition of some of the original classes. The system is similar to traditional finite element analysis programs in that all data stored is in terms of global degrees of freedom, and the properties of a structure as a whole are assembled into a system of linear equations. Transformations are performed implicitly by the object that creates the information. No geometric classes are defined to aid in element geometry and vector based data manipulation. A basic numerical library is provided which contains full, banded, and skyline matrices and full vectors.

The system of linear equations is contained within a subclass of the LinearSystem class. The subclassing is based on the storage scheme used for the system stiffness and mass matrices. The LinearSystem objects are responsible for equation numbering, some assembly tasks, and the production of the response quantities. With the exception of the simple displacement boundary conditions, there is a one-to-one mapping between degrees of freedom and equations of equilibrium.

Elements produce stiffness and mass matrices and equivalent load vectors in terms of the global coordinates at the nodes. Elements do not provide a damping matrix. All nodes have the same set of coordinates defining the direction of the degrees of freedom.
freedom. The elements are responsible for the assembly of their properties into the
global property objects with the help of the LinearSystem object. The elements define
and manage their own constitutive models. A material class is provided to handle
material properties such as Young's Modulus and mass density.

The nodes store their physical location, in terms of global coordinates, a list of degrees
of freedom, applied loads, and the location of the degrees of freedom in the global set
of equations of equilibrium. The degrees of freedom can retrieve their response values
(displacements, velocities, and accelerations) from the global response vectors. The
nodes also keep track of their displacement boundary conditions. No multi-point
constraints are provided. The equation numbers associated with the degrees of
freedom are obtained by the node from the LinearSystem object.

The extensions to the system to accommodate material nonlinearity required the
redefinition of some classes and the addition of others. Most significantly, was that of
a Domain class, which steps the LinearSystem objects through a Newton-Raphson
iteration scheme to convergence. Other objects, such as the GaussPoint, Material, and
Element class, were redefined to permit nonlinear behavior.

2.3 Jun Lu, et al.

Jun Lu, et al. [22, 7, 35] present an excellent architecture for a small, flexible, "fly-
weight" finite element analysis program. The heart of the system is an Assembler
object, which performs the transformation of element properties between the element
coordinates and the structural degrees of freedom. The Assembler object also assigns
equation of equilibrium numbers to the structural degrees of freedom and builds the structural property matrices. Few details are given.

A large numerical library was developed by the authors. It includes banded, triangular, sparse, symmetric, and profile matrices.

Although no set of geometric support objects are given, reference to coordinate systems and tensors indicate that at least a rudimentary system is implicit in the design. The elements provide their local coordinate systems, and the nodes provide the structural coordinate systems, to the Assembler.

Elements can provide their stiffness, mass, and damping matrices. No facilities for state update or resisting force calculations are provided. Element forces are communicated to the Assembler as equivalent nodal loads to be included in the right hand side of the equation of equilibrium. A material class is available to provide the elements with a basic stress-strain law. The element is responsible for using this to derive the appropriate constitutive equations, such as moment-curvature, as needed. Nonlinear material objects are permitted, but no details are given.

The nodes contain their position in space, and a collection of degree of freedom objects. The degrees of freedom consists of a vector in a coordinate system. The direction of the vector indicates the direction of the degree of freedom (for example, three degrees of freedom are required for 3D translation). The associated equation number, assigned by the Assembler, is stored in the degree of freedom. Only single point constraints are permitted. The constraint information is contained in the degree of freedom.
No solution schemes are provided, but an EquationSolver class is given. Its subtype seems to be determined by the storage type chosen for the structural property matrices. The communication between the EquationSolver and the Assembler, which appears to be highly dependent upon the matrix type chosen, is not described.

2.4 J. W. Baugh, et al.

J. W. Baugh, et al. [3, 4] present an architecture for a linear static finite element analysis program. The bases of the system is the coordinate system objects which permit the elements and nodes to describe themselves in terms of Cartesian, Cylindrical, and Spherical systems. The coordinate systems are related to a global coordinate system by a 3x3 rotation matrix (direction cosines). These rotation matrices are used to perform the transformations of load vectors and stiffness matrices from one coordinate system to another.

Each node stores its position in its own coordinate system. The same coordinate system is used to describe the orientation of the degrees of freedom at the node. Both rotations and translations use this same system. The displacements calculated by the analysis are stored at the nodes. The degrees of freedom maintain their boundary condition and loading value. Only single point constraints are permitted. The nodes also store the topology of the model, that is the connectivity caused by the elements.

The elements are responsible for obtaining the coordinate systems at the nodes, and transforming their stiffness and load values into these nodal coordinates using the
rotation matrices provided by the coordinate systems. The elements are required to assemble themselves into the global stiffness matrix and load vector. No details for this process are provided. A material class is given to provide the constitutive model for the element. The material objects are subclassed according to the measures of stress and strain used in the material interface.

2.5 H. Adeli, et al.

H. Adeli, et al. [1, 38] present a simple linear elastic static finite element system that is closely related to traditional finite element programs. All nodes have three displacement degrees of freedom. The orientation of these degrees of freedom coincides with the assumed global coordinate system. No information is provided as to how the equations of equilibrium are formed, or their relation to the degrees of freedom. No facilities for geometric support or transformations are provided. A small numeric library is developed which includes full vector and full matrix classes.

A separate class, named GlobalData, is created to make some model parameters, such as the number of degrees of freedom, available to all objects in the system. Some classes use the GlobalData class as a superclass "to provide better service".

The nodes store their position in the global coordinate system. They also store the value of the displacements of their three degrees of freedom. Nodes can be subclassed based on geometry to aid in the generation of the nodes. A DNode class is a subclass of the Node class, and is used to represent an increment in the coordinates from one node to another.
Only linear elastic elements are permitted. The classes Shape, Gauss, and Jacob are provided to aid in the element formulation. An Element_seq class is also given to provide information to the element regarding the sequence of nodes to which the element attaches. A material class is also provided, but no details are given.

2.6 Discussion

The five system architectures reviewed demonstrate the wide range of views on object-oriented finite element program design. A recurring theme is the desire to isolate the various components of the system from one another. The most successful at this is Lu, et al., with their creation of the Assembler class, which attempts to isolate the model from the analysis. Significant drawbacks to their approach are the assumption of the one-to-one correspondence between model degrees of freedom and equations of equilibrium, and the fact that the equation number is stored at the node. Multi-point constraints would be extremely difficult to add to the system, and the presence of the analysis equation numbers within the model may lead to implicit reliance on analysis data with model components.

Both Miller, et al. and Baugh, et al. provide geometric objects in support of the system. This approach not only frees programmers from the transformation task, but this centralized approach encourages efficient implementation of these basic objects. One drawback to Miller's insistence on the use of tensors is that it tends to dissuade future development of the system by researchers more comfortable with traditional matrix structural analysis. Perhaps a better approach is to include both tensor and
matrix representation. Baugh's approach of relying on the coordinate system objects to provide the transformation matrices seems appropriate.

Since most additions to existing finite element codes involve new elements, it is desirable to reduce the work of the element authors as much as possible. Most systems demand that the element provide its properties in terms of the nodal coordinate systems. This creates additional work for each element writer. With Miller's coordinate free geometry, this is eliminated, but at the expense of a tensor formulation. It is preferable to allow the element to provide its properties in any form, but then insist that the element provide a transformation into a convenient set of local coordinate systems recognizable to the rest of the system.

The treatment of constraints in the five systems, for the most part, appears to be an after-thought. Only single point constraints are permitted. These are generally stored as an attribute of the degree of freedom. This eliminates the seamless inclusion of the multi-point constraints types used in most existing finite element programs.

Upon discovery of object-oriented programming languages, one of the engineer's first thoughts is the application of inheritance to matrices. The ability to seamlessly switch the basic matrix storage scheme and solver in a finite element system is very attractive. As a result, most of the systems have developed their own numerical libraries. This repetition of work is inefficient. The use of a universally available, efficient, numerical library is preferable. The design of the library is best left to specialists in numerical analysis [2, 13]. This frees engineers to concentrate on the structural aspects of the design.
Some items that are typically included in existing finite element programs are missing from the above systems. This is probably due to the lack of space available in a publication, but they do deserve note. Loads should be grouped into load cases, and the load cases grouped into load combinations. Prescribed displacements should be included in the load cases. Renumbering of the equations of equilibrium to reduce the solution cost should be provided. Provision for substructuring is also very useful.
3. Methodologies

This chapter presents the methodologies that were used to design, implement, and document the object-oriented finite element analysis system. It is divided into three sections: Design Formalisms; Implementation in C++; and Implementation Formalisms. The design formalisms are the means by which the object design was created, and also the methods used to document the design. The design was implemented in the C++ programming language. The implementation in the C++ section describes the general manner in which the implementation was developed in C++. The final section describes the C++ interfaces for the implemented classes contained in the Appendix, and the demonstration code that appears throughout the dissertation.
3.1 Design Formalisms

Object modeling is iterative by nature, as is any design activity. The principal tool used throughout the design process is the Entity Relationship Diagram, which shows the relationships between the classes. While this tool is useful in the design process, it does not provide complete information for the description of the final design. In this section, the description of the object model design includes the Design Intent, an Entity-Relationship Diagram, a Responsibility Description, an Event Flow Diagram, and the Interface Definition Table.

3.1.1 Design Intent

The Design Intent of a class is a top-level description of what place the class occupies in the overall object design. It describes the purpose of the abstraction and the inherent qualities of the class. The description is not in reference to any programming concept, but to the actual purpose the class fulfills in the finite element method. For example, the design intent of an element is to represent the physical properties of the piece of the model it describes, and maintain the state of those properties.

3.1.2 Entity Relationship Diagrams

Entity Relationship diagrams are commonly used (Rumbaugh [33]) to show the relationships among classes in the design. A sample Entity Relationship Diagram is shown in Figure 3.1.2. Classes are shown as boxes around the class name. The links between the boxes establish the relationship between the classes. Links are labeled
with the type of association that exists between the classes. In the example, an Element connects to a Node. Thus, the classes Element and Node are linked together with the connects to association. In fact, many Elements may connect to many Nodes. This multiplicity, of zero or more, is represented by a darkened circle at the end of the link. Links with no special ending represent a multiplicity of exactly one. Links that end in a diamond shape represent aggregation. Aggregation describes a relationship in which one object is part of another in an assembly. For instance, many Nodes and many Elements are part of a Model. Generalization is represented by a triangle within a link pointing towards the more general class. For example, the Element class is a generalization of a Truss Bar, a 27-Node Brick, and other classes represented by the dots.

![Sample Entity Relationship Diagram](image)

Figure 3.1.2 Sample Entity Relationship Diagram

3.1.3 Responsibility Description

The Responsibility Description is used to show the features the class is responsible for providing to other objects, and also what actions the class performs internally to meet
these responsibilities. The responsibilities are the embodiment of the design intent. They show how the object will satisfy the design intent to the rest of the system. The design intent for an Element may state that the Element provides its stiffness to the Analysis. The responsibility description, on the other hand, describes how the Element queries its Constitutive Models to determine the current stiffness and passes this on as a matrix augmented with transformations.

3.1.4 Event Flow Diagram

An Event Flow Diagram shows the methods provided to the clients of the class, and which features of other classes are used to perform these functions. A sample Event Flow Diagram for a Node is given in Figure 3.1.4. For clarity, not all events are shown. The diagram shows the events that may occur between the classes. Events are the flow of information between objects. Events that flow toward the class in question represent services the class must provide. Events that flow away represent services of other classes that are required. Classes are represented by boxes containing the class name. The links between the boxes represent events. The arrow on the link points away from the object that initiates the event. For example, a degree of freedom (Dof) can be added to a Node by the Modeler or an Element. A Map can update and commit the state of the Node. The Node in turn updates and commits the state of its degrees of freedom. An Element can request the state of a particular degree of freedom from the Node. The Node gets the state from the degree of freedom in question.
3.1.5 Interface Definition Table

Once all the relationships the object has to the rest of the system are established, the specific services the object must implement can be defined. The Interface Definition Table provides a formal description of the publicly available methods the object provides, including the argument and return types. A sample Interface Definition Table is given in Table 3.1.5. The arguments and return types are given as a non-language specific description of the object type that is required. It is intended to be used directly to implement the design in a programming language.
<table>
<thead>
<tr>
<th>Method</th>
<th>Arguments</th>
<th>Return</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction</td>
<td>Unique to each element, but includes instances of</td>
<td></td>
<td>Creates an instance of a specific type of Element</td>
</tr>
<tr>
<td></td>
<td>Constitutive Models</td>
<td></td>
<td></td>
</tr>
<tr>
<td>getStiff</td>
<td></td>
<td>Stiffness matrix augmented with transformation into known Coord Sys</td>
<td>Provides the current linearized stiffness</td>
</tr>
<tr>
<td>getDamp</td>
<td></td>
<td>Damping matrix augmented with transformation into known Coord Sys</td>
<td>Provides the current Damping matrix</td>
</tr>
<tr>
<td>getMass</td>
<td></td>
<td>Mass matrix augmented with transformation into known Coord Sys</td>
<td>Provides the current Mass matrix</td>
</tr>
<tr>
<td>getResistingForce</td>
<td></td>
<td>Load vector augmented with Coord Sys</td>
<td>Provides the current resisting force, including the initial state and element loads</td>
</tr>
<tr>
<td>updateState</td>
<td></td>
<td></td>
<td>Causes the Element to update its state from the Nodes</td>
</tr>
<tr>
<td>getEventFactor</td>
<td></td>
<td>Event Factor</td>
<td>Returns the current event factor</td>
</tr>
<tr>
<td>initialize</td>
<td>Unique to each type of Element</td>
<td></td>
<td>Announces the presence of an Initial Element State</td>
</tr>
<tr>
<td>commitState</td>
<td></td>
<td></td>
<td>Commits the current state of the Element</td>
</tr>
<tr>
<td>getConnectingDof</td>
<td></td>
<td>list of dof</td>
<td>Returns a list of dof to which the element attaches</td>
</tr>
</tbody>
</table>

Table 3.1.5 Sample Object Definition Table (for an Element)

3.2 Implementation in C++

Once the object design is complete, the next task is implementation in a computer language. The natural choice for an object-oriented design is an object-oriented programming language. There are many object-oriented languages available, and each has its own set of features and quirks. C++ [16, 37] was chosen. The implementation specifications are given, in the form of the C++ public interfaces for the classes, in the Appendix.
C++ is the most widely used object-oriented programming language for a wide range of applications. Specifically, in the object-oriented finite element literature reviewed in the previous chapter, virtually all authors based their work on C++. Such a large base of users has led to many high quality compilers, container class libraries, and numerical object libraries. For the most part, C++ is compatible with the C programming language. Thus, old C code and even older C programmers can be incorporated with minimal effort. When designed properly, C++ code is as fast and memory efficient as C code.

The objects described, using the design formalisms from the previous section, lend themselves to direct implementation as classes in C++. The Design Intent and Responsibility Description define the abstraction the class encompasses. The Entity Relationship Diagram and Event Flow Diagrams give the inheritance relationship and other dependencies the class has with other classes. The Interface Definition Table defines the methods the class must provide. What remains at the discretion of the implementation are the specific C++ data types used as the arguments and return values of the methods, and the data types used for the class's instance variables.

3.2.1 Associations

Associations between classes can be implemented as pointers, friends, and distinct association objects. A pointer references another object as an instance variable in the class. Access to the public methods of the referenced object is available. This is appropriate for a one-to-one association; the pointer may reside in either class. For a one-to-many association, a list of pointers may be employed at the end with a
multiplicity of one. For more complex associations, such as many-to-many associations, where access from each side of the association is required, a distinct association object may be used. This type of association, typically used in database applications, did not come up in the research. All associations are implemented as pointers.

3.2.2 Inheritance

The implementation of the inheritance relationships in the object design is fairly straightforward in C++. A subclass inherits from one or more superclasses. The decision as to which features of the superclass the subclass may inherit, are decided in the implementation of the superclass. In C++, this is declared by the use of private, public, protected, and virtual members. The private members of the superclass are hidden from the subclass. Only the public and protected members are available to the subclass. Declaring a member private preserves encapsulation, but limits the usefulness of future subclasses. Methods that are declared virtual in the superclass may be replaced in the subclass. For example, a print method for a superclass can be replaced by a print method in the subclass. Declaring a method to be virtual in a class enhances the flexibility of future subclasses.

An abstract class is one in which an instance of the class cannot exist. Its purpose is to serve as a superclass to a number of subclasses. For example, the class Element is abstract and serves as the superclass for all element types such as Truss Bar. An abstract class is indicated by the presence of a method that is declared pure virtual. A
pure virtual method has no implementation. The method must be implemented in the subclass.

3.2.3 Interfaces

In C++, the instance variables and method prototypes of a class are typically declared together as the interface for the class. C++ is a statically typed language, so the type of all variables must be declared in the interfaces. The interface for the class provides an excellent means to describe the implementation. The available methods in the actual interface for a class may differ slightly from the Object Definition Table given in the design. Additional methods may be provided for implementation specific tasks, such as providing a hash function for the object. A typical interface is:

```cpp
class FeaNode : public FeaDofGroup {
private:
  FeaGeoPoint* location; // location of the node
public:
  // constructor
  FeaNode(char* name, FeaGeoPoint& point);

  // copy constructor
  FeaNode(FeaNode& other);

  // destructor
  ~FeaNode();

  // assignment operator
  void operator=(FeaNode& other);

  // get position of the node
  FeaGeoPoint& getPosition();

  // print out the node
  void print();
};
```
This is the interface for the class FeaNode. The first line declares that FeaNode inherits from the class FeaDofGroup, and the public interface of FeaDofGroup is included in the interface for FeaNode. The instance variable location, is pointer a object of type FeaGeoPoint. This instance variable is private.

In this example, there are six publicly available methods. The first two methods are constructors, as they have the same name as the class. Constructors are used to construct an instance of the class FeaNode. The first method has two arguments, a pointer to a character, and a reference to an object of type FeaGeoPoint. The second method is a copy constructor. It creates an instance of type FeaNode that is an exact copy of the referenced object. The third method is the destructor for the class. It can be called explicitly to remove an instance of the class, or implicitly by the compiler when an instance of FeaNode falls out of scope. The fourth method defines the assignment operator for the class. These four types of methods will appear in all class interfaces. The last two methods complete the interface for the FeaNode class. The position of the node is returned by reference, and an instance of FeaNode can be instructed to print itself.

3.2.4 Libraries

The implementation of the object design requires the use of specific C++ classes to serve as the arguments and return values of the methods. Most classes will be defined in the object design or taken from a library of numerical objects; others are taken from the intrinsic C++ types, such as ints and doubles. Often a class will make use of complex data structures typically referred to as container classes.
3.2.4.1 Container Classes

The container classes used in the implementation are: vectors, lists, dictionaries, tables, and combinations of the four. An array is a fixed-length collection of objects of the same type. Value access is through an integer index. Individual members of the collection are accessed directly. Access is rapid, but the number of members in the collection must be known ahead of time. The list data structure is a singly linked list of a specific class of objects capable of adding new objects to the front or back of the list, and providing an iterator for sequential access to the elements of the list. To access a specific element on the list, the list must be traversed until the element is found. Access is slow, but the size is not fixed. A dictionary is a list of pairs of keys and values. Access to a value is obtained using the key as an index. The internal representation for this implementation is a list, so the search for a specific key is slow. A table implements the collection of pairs of keys and values as a hash table. Access to a specific key is faster than for a dictionary, but a hash function must be provided for the key object.

The data structure library detailed by T. Budd [6] was selected for use in the program. The code is well documented. As a result, it is easy to use and understand. Near the end of the programming portion of the research, the ANSI/ISO C++ Standard Committee voted to make the Standard Template Library (STL) [36] part of the standard C++ library. The committee's work is not final, and the STL does not work all compilers due to its heavy use of templates. The STL contains the necessary data structures, and will be included in the next revision to the finite element program.
3.2.4.2 Numerical Object Library

The purpose of the numerical object library is to provide a useful set of general and specialized vectors and matrices in support of the finite element program. The literature contains many examples of libraries of matrices, some by authors of finite element programs [22, 40, 34], others by numerical analysts [13, 2]. The selection of a numerical object library is not to be taken lightly, as it affects many aspects of the system. To begin the selection, one needs to define what is required from the library. In this work, a minimal numerical object library is used. Typical vector operations such as transposition and multiplication, and matrix operations, such as eigen-analysis, are not implemented. The numerical objects could be subclassed based on sparsity. For the arrays, only the full array has been implemented. For the matrices, the implementations for the full and block matrices are given.

3.3 Implementation Formalisms

The complete C++ code for the implemented object design consists of over 10,000 lines. Obviously it is far too bulky to be presented in this document. Some code is presented to help understand, use, and extend the program. Chapter 5 gives a detailed explanation of some of the top level objects in the program, and Chapter 6 presents some objects that were added to the design. The C++ interfaces for the classes are given in the Appendix. This section describes the formalisms used in the Appendix and Chapters 5 and 6. Namely, an explanation of the public interfaces for the classes, and a description of the code used to demonstrate the implementation.
3.3.1 C++ Interfaces

The C++ interfaces for the classes are merely the direct implementation of the Interface Definition Tables described in section 3.1. That is, they are the methods that the object provides to its client objects. The C++ interface includes the C++ data types for the arguments and return values, and sufficient commenting to permit programmers to use it as a guide to the use of the class. A typical public interface for a class, in this case for the FeaTrussBar class, is shown below.

```cpp
class FeaTrussBar : public FeaElement {
// public interface for a truss bar element
// a subclass of the FeaElement class
public:
    // constructor
    FeaTrussBar( const char* name,
                 double area,
                 FeaNode& nodeI,
                 FeaNode& nodeJ,
                 Fea1DConstitutiveModel& conMod,
                 FeaMaterial& material);

    // state methods
    void updateState();
    void commitState();
    double getEventFactor();

    // return the current resisting force
    FeaAugmentedVector& getResistingForce();

    // report of the current stiffness mass and damping
    FeaAugmentedMatrix& getStiff();
    FeaAugmentedMatrix& getMass();
    FeaAugmentedMatrix& getDamp();

    // returns the dof to which the element attaches
    FeaTransformation& getConnectingDof();

    // print methods
    void print();
    void printForce();
};
```
A comparison of this C++ interface with the Interface Definition Table, shown previously as Table 3.1, shows the direct relationship between the class as designed and as implemented. The first line of the public interface names the class as `FeaTrussBar`, which is a subclass of `FeaElement`. Following this declaration, are the public methods of the class. The names of the methods are preceded by the type of the return value. The arguments for the methods are contained with brackets and include the argument type and a name with indicates the meaning of the argument. Two print methods are included to output the state of the element.

3.3.2 Demonstration Code

Code fragments are used throughout Chapters 5 and 6 to demonstrate the implementation. The reason for the demonstration code is that actual C++ code involves somewhat complicated syntax to declare data types and memory management. The principal differences with C++ are: data types are not declared when they can be inferred from the context of the use; use of pointers or references are implicit; memory management is not included; iteration through data structures is simplified; and method calls are not chained together for clarity. For a description of the C++ language, the reader is directed to the literature [16, 37, 9].

Where the type of a variable is clear from the context of the statement, the type declaration is not included in the demonstration code. For example, in the C++ statement:

```cpp
FeaFullMatrix* el = new FeaFullMatrix(3,3);
```
creates a 3 by 3 matrix (FeaFullMatrix) and a pointer to it named el. The
demonstration code for this is:

```cpp
el = new FeaFullMatrix(3,3);
```

The type for el can is implied from the statement without the explicit declaration. All
variables are treated as values. This clarifies the syntax a little by avoiding the
referencing, de-referencing, and deletion of variables. In C++, the component of el on
the second row and third column is referred to as (*el)(1,2), whereas in the
demonstration code, the fact that el is a pointer is not shown, therefore the element is
accessed as el(1,2).

A common operation in the program is to iterate through a collection of objects. The
collection may be a list, vector, dictionary, or table. The syntax for this can be quite
cumbersome. The type of the iterator must first be declared, the iterator is then
obtained from the collection, and a for loop is set up to iterate through the collection.
For example, the C++ code to iterate through the components of a hash table named
map is:

```cpp
// declaration for map
table< FeaDofCompDesc&, dictionary<int, double> > map;

// declare iterator using map in the constructor
tableIterator< FeaDofCompDesc&, dictionary<int, double> > itr(map);

// initialize and loop through itr
for ( itr.init(); ! itr; ++itr )
{
}
```

The demonstration code for the creation of the iterator is shown as a call on the map's
getItr method. The loop is shown as iterateThrough demonstration code
statement acting on itr.
// declare iterator using map in the constructor
itr = map.getItr();

// initialize and loop through itr
iterateThrough(itr)
{
}

The important features of the code have been captured; that is, the source of the iterator and the presence of the loop. In both C++ and demonstration code, the () operator yields the current item in the collection.
4. Object Model Design

This chapter presents a top-down, system level description of the object model design for the Object-Oriented Finite Element Analysis Program. The essence of this design is abstraction. That is, the identification of the essential properties of the classes of objects, and thus the division of responsibilities between the classes. Therefore, the primary focus of the chapter is the description of abstractions for each class. The description does not deal with the implementation of the classes. The details of how the responsibilities will be met are described in subsequent chapters.

The intent of the object design is to form a set of abstractions for the Finite Element Method that are flexible enough to permit the addition of yet unenvisioned concepts. Only the inherent qualities of the objects must be defined in the abstractions. Since these qualities will not change, additional features can be incorporated into the system without requiring change to the existing object design, only additions.

The names of the objects in the design are based on the function they fulfill in the finite element method. A Model object represents the finite element model, an Analysis
object represents the numerical description of the analysis, and the Map object provides the mapping between the model and the analysis. A model is composed of elements, nodes, constraints, and loads. Elements form the foundation of the finite element method. An Element object provides the properties of the portion of the model it physically represents. Elements attach to Nodes. Node objects represent a point in space and contain Degrees of Freedom objects, which represent the unknowns of the problem. A Constraint object is a time invariant homogeneous multi-point constraint in the model (such as rigid body constraints). A Displacement Boundary Condition object represents a single-point constraint that can vary in time. A Load Case object consists of possibly many Load objects, Prescribed Displacement Value objects, and Initial Element State objects, that together form a set of loads on the model. The Load objects may apply to nodes or elements.

The basic features of the design are as follows: The state of the model to be analyzed is represented in the Model, in terms of degrees of freedom and elements. The Analysis deals mostly with numerical objects (Vectors and Matrices) in terms of analysis unknowns. The Map provides the link between degrees of freedom in the Model, and unknowns in the Analysis. All objects passing between the Analysis and the Model, and vice versa, must go through the Map for transformation. Provision is made for analysis unknown reordering. Homogeneous multi-point constraints are contained in Constraint objects, and are processed by a Constraint Handler. Single-point constraints can be non-homogeneous and time dependent, and are processed directly by the Analysis. Coordinate System, Vector, and Point objects are provided. All Coordinate System objects can produce transformations to all other Coordinate Systems, including those with a different number of dimensions. Vectors and Points contain their own internal Coordinate System. Nodes store response data at the degrees of freedom as
Scalars or Vectors. Elements retrieve information from the Nodes as Scalars and Vectors and may interpret them in any convenient Coordinate System. Elements of a certain dimension (such as a one-dimensional truss bar) may be placed in a problem of a different dimension (such as a three-dimensional system). Transformation of vectors and matrices from element to local to nodal to analysis unknowns and vice versa are handled using augmented vectors and matrices that take advantage of the block structure of the transformations, and apply all the pending transformations efficiently only when the final value is needed.

Elements and Loads may express their properties in any convenient Coordinate System. Transformation to nodal degrees of freedom and further into analysis unknowns is handled by the Map. Both Nodal and Element Loads are provided, and are separated into Load Cases.

The chapter is divided up into several subsections. Each subsection deals with one or more closely related classes that together form a module for a specific purpose. As described in the previous chapter, the descriptions of the Object Model Design are given in terms of: the Design Intent, which describes how the class fits into the Finite Element Method; an Entity-Relationship Diagram, which shows how the class is associated with other classes; a Responsibility Description, which details the external and internal responsibilities of the class; an Event Flow Diagram, which outlines the flow of information for the class, and the Interface Definition Table, which precisely defines the public methods of the class.
4.1 Top Level Objects

To provide a general overview of how the components of the object design fit together, Figure 4.1 gives the basic layout of the object model. Class names are shown within boxes, and the associations between the classes are drawn as lines connecting the boxes. The notation is similar to an Entity Relationship Diagram described by Rumbaugh et al [33], but only a few of the principal classes and associations are shown. At this high level, the system design consists of a Model, an Analysis, a Map, and two Handlers.

![Figure 4.1 Overall Object Model](image)

An Analysis object performs an analysis on a Model. It obtains the properties of the Model, performs analysis tasks, and updates the Model. The goal of the design is to prevent any dependencies between the Model and the Analysis. This is achieved by the use of the Map object, which communicates between the Model and the Analysis. Model data is expressed in terms of unordered and possibly dependent degrees of
freedom. Analysis data consists of ordered and independent unknowns. The Map transforms the data, which flows between the two, from one basis to the other.

Also at this high level of the design are two Handler objects, so named because they handle the execution of tasks which are model dependent, but must be directed by the Analysis. The Constraint Handler processes the constraints to provide the Map with an initial mapping between the Model degrees of freedom and the analysis unknowns. The manner in which the constraints are to be handled (e.g. by transformation, Lagrangian multipliers, or penalty functions) is chosen by the Analysis, but the Handler does all the work. The Reorder Handler reorders the initial analysis unknown numbering according to the criteria chosen by the Analysis, typically to reduce the storage requirements of the sparse system property matrices. Both Handlers are chosen by the Analysis.

The dependencies between the model components and the analysis data have been removed by the formation of the Map object. In fact, much of the difficulty encountered in the modification of finite element analysis programs involves the transformation of model properties from one basis to another. This task has been taken over by the Map object. The design of the Map object is fairly complicated, but once it is defined, the resulting finite element system is much less complex and easier to modify or extend.

This section describes the object design of the three top level objects, namely the Model, the Map, and the Analysis objects. The high level Handler objects are described in Section 4.3.
4.1.1 Model

The Model object represents the finite element model that is to be analyzed. The Model object contains the collections of its constituent objects and provides access to these collections as requested.

The Entity Relationship diagram for the Model object is given in Figure 4.1.1a. A Model is represented to the Analysis by a Map. A single Model may have many Nodes, Elements, Load Cases, Displacement Boundary Conditions, and Constraint objects.

![Entity Relationship Diagram](image)

Figure 4.1.1a Entity Relationship Diagram for the Model Object

The Model object represents the Elements, Nodes, Load Cases, Displacement Boundary Conditions, and Constraint objects. An Element object may also create a Node and request the Model to add it to the collection. The user of these component collections is the Map object. In order to access the Model from the Analysis object, Map requests from the Model collections of the components. Access to the collections is provided by means of an iterator. The iterator provides access to each component of the collection.

The Event Flow diagram for the Model object is given in Figure 4.1.1b. The diagram displays the possible flow of events between the Model class, users of the Model
interface (Modeler), and classes which the Model object uses. The arrow is drawn in the direction of the message. The Model object does not request the services of other objects to perform its function. The Modeler asks the Model to add a component (Element, Node, Load Case, Displacement Boundary Condition, or Constraint object) to its collections. An Element may also request the Model to store a Node. The Map object requests access to these collections to permit the Map to represent the Model to the Analysis object.

Figure 4.1.1b Event Flow Diagram for the Model Object

The Interface Definition for the Model class is given in Table 4.1.1. The table defines the methods the class provides, including the arguments and return values. The table provides a complete and detailed package representing the design of the class. It is intended to be used directly to implement the design.
Table 4.1.1 Model Interface Definition

<table>
<thead>
<tr>
<th>Method</th>
<th>Arguments</th>
<th>Return</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction</td>
<td>name</td>
<td></td>
<td>creates an instance of Model</td>
</tr>
<tr>
<td>addDofGroup</td>
<td>dofGroup object</td>
<td></td>
<td>adds a dofGroup (Node) to the Model</td>
</tr>
<tr>
<td>addElement</td>
<td>Element object</td>
<td></td>
<td>adds an Element to the Model</td>
</tr>
<tr>
<td>addLoadCase</td>
<td>Load Case object</td>
<td></td>
<td>adds a Load Case to the Model</td>
</tr>
<tr>
<td>addPrescBC</td>
<td>Displacement Boundary Condition object</td>
<td></td>
<td>adds a Displacement Boundary Condition object to the Model</td>
</tr>
<tr>
<td>addConstraint</td>
<td>Constraint object</td>
<td></td>
<td>adds a Constraint object to the Model</td>
</tr>
<tr>
<td>dofGroupItr</td>
<td>iterator to the list of Node objects</td>
<td></td>
<td>gets the iterator to the list of Node objects</td>
</tr>
<tr>
<td>elementItr</td>
<td>iterator to the list of Element objects</td>
<td></td>
<td>gets the iterator to the list of Element objects</td>
</tr>
<tr>
<td>loadCaseItr</td>
<td>iterator to the list of Load Case objects</td>
<td></td>
<td>gets the iterator to the list of Load Case objects</td>
</tr>
<tr>
<td>bCltr</td>
<td>iterator to the list of Displacement Boundary Condition objects</td>
<td></td>
<td>gets the iterator to the list of Displacement Boundary Condition objects</td>
</tr>
<tr>
<td>constraintItr</td>
<td>iterator to the list of Constraint objects</td>
<td></td>
<td>gets the iterator to the list of Constraint objects</td>
</tr>
</tbody>
</table>

4.1.2 Map

The Map object provides the link between the Model and the Analysis. It is a mapping between the degrees of freedom in the model and the unknowns in the Analysis. All communication with the Analysis is in terms of analysis unknowns, and all communication with the Model and its sub-components is in terms of degrees of freedom. Although the Map object manages this mapping, it does not create the information. The mapping is created by the Constraint Handler. At the direction of the Analysis object, Map obtains the property matrices and vectors from the Elements, Loads, and Nodes. It converts them to analysis unknowns and passes them to Analysis. Map also receives the responses from Analysis, transforms and distributes them to the Nodes.
The Entity Relationship Diagram for the Map class is shown in Figure 4.1.2a. Map provides a representation of the Model to the Analysis object. The Analysis object interfaces with the Map object to obtain the model properties, and to place the response quantities back into the Model. The Constraint Handler provides the initial mapping between Model degrees of freedom and Analysis unknowns. The Reorder Handler provides a new ordering scheme to the list of analysis unknowns based on a criteria selected by the Analysis object. A Matrix Handler object queries the Map to determine the connectivity of the analysis unknowns.

![Figure 4.1.2a Entity Relationship Diagram for the Map Object](image)

The primary responsibility of the Map object is to convert information from Model degrees of freedom to Analysis unknowns and vice versa. Given an Element, the Map can retrieve the appropriate property matrix (stiffness, mass, damping) or vector (resisting force), expressed in any convenient local coordinate system, and return it in terms of analysis unknowns. Also, given a Load object (element or node), Map can retrieve the value of the load and transform it to analysis unknowns. Given a
Displacement Boundary Condition or Prescribed Displacement Value, Map can return the affected analysis unknown. Given the responses (displacements, velocities, etc.) from the Analysis object, the Map object can update the appropriate Model Nodes. The response quantities can be absolute or incremental. The Map object also provides iterators for the lists of Elements, Load Cases, Displacement Boundary Conditions to the Analysis object, and an iterator for the list of Constraints for the Constraint Handler object. The Map object must also provide the analysis unknown connectivity information to the Matrix Handler. This is accomplished by providing a list of connected analysis unknowns for any given analysis unknown and the connected analysis unknown that is most distant from the given one.

To provide the public services, Map makes use of several objects. Map obtains an initial degree of freedom to analysis unknown mapping from the Constraint Handler. The mapping contains the transformation values to convert between degrees of freedom and analysis unknowns. Map augments this mapping by obtaining a new analysis unknown ordering scheme from the Reorder Handler. Both of these Handlers are created by the Analysis object and passed to the Map at the time the Map is created.

Model property objects (stiffness, mass, damping, load) are obtained from the Model component objects directly. The property objects are given in terms of local coordinate systems (local to the object that produced it). Map is responsible for transforming the object into nodal (degree of freedom) coordinates, and then into analysis unknowns. These transformations are obtained from the local and nodal Coordinate System objects. The final transformation to analysis unknowns is obtained from the mapping provided by the Constraint and Reorder Handlers. To distribute the response quantities
to the Nodes, Map transforms the values, given in analysis unknowns, into values for
the degrees of freedom. The degree of freedom values are then combined into vectors
where appropriate (vector combination of the degree of freedom values for a
coordinate system axis) and distributed to the appropriate Nodes.

The Event Flow diagram for the Map object is given in Figure 4.1.2b. The diagram
displays the possible flow of events between the Map class, users of the Map interface,
and classes which the Map object uses. The arrow is drawn in the direction of the
message. The principal user of the Map object is Analysis. Analysis requests iterators
for the lists of the Model components (Elements, Initial Element States, Prescribed
Displacements, Loads, and Displacement Boundary Conditions). Map obtains the
iterators from the Model object and passes them to Analysis. Analysis also requests the
property objects (stiffness, load, mass, damping, resisting force, load) for a Model
component (Element, Load). Map obtains the property from the component,
transforms it to analysis unknowns, and returns it to Analysis. Analysis may give a
vector of response values to the Map. Map transforms these into nodal values and
passes them to the Nodes to update their state. Also, the Map may be requested to
instruct the Nodes to scale the pending increment by a factor. The Analysis can also
request the associated analysis unknown for a given Displacement Boundary Condition
object or a Prescribed Displacement object. Map in turn requests the DOF Description
from the object and returns the analysis unknown to Analysis. The Map also provides
the Analysis with methods which will update or commit the state of the entire model,
and a method which initializes all Initial Element State objects in a load case.
The Interface Definition Table for the Map class is given in Table 4.1.2.

<table>
<thead>
<tr>
<th>Method</th>
<th>Arguments</th>
<th>Return</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction</td>
<td>Model, Constraint Handler,</td>
<td></td>
<td>Creates a Map object</td>
</tr>
<tr>
<td></td>
<td>Reorder Handler</td>
<td></td>
<td></td>
</tr>
<tr>
<td>elementItr</td>
<td>Iterator for the list of</td>
<td></td>
<td>Gets the Iterator for the list of Elements</td>
</tr>
<tr>
<td></td>
<td>Elements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bCIttr</td>
<td>Iterator for the list of</td>
<td></td>
<td>Gets the Iterator for the list of</td>
</tr>
<tr>
<td></td>
<td>Displacement Boundary</td>
<td></td>
<td>Displacement Boundary Conditions</td>
</tr>
<tr>
<td></td>
<td>Conditions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>loadItr</td>
<td>Load Case name</td>
<td>Iterator for the list of</td>
<td>Gets the Iterator for the list of loads</td>
</tr>
<tr>
<td></td>
<td>loads</td>
<td>loads</td>
<td></td>
</tr>
<tr>
<td>presDispItr</td>
<td>Load Case name</td>
<td>Iterator for the list of</td>
<td>Gets the Iterator for the list of</td>
</tr>
<tr>
<td></td>
<td>Prescribed Displacements</td>
<td>Prescribed Displacements</td>
<td>Prescribed Displacements</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>initElStItr</td>
<td>Load Case name</td>
<td>Iterator for the list of</td>
<td>Gets the Iterator for the list of</td>
</tr>
<tr>
<td></td>
<td>Initial Element States</td>
<td>Initial Element States</td>
<td>Initial Element States</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>initializeElSt</td>
<td>Load Case name</td>
<td></td>
<td>Initializes the element states</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>for the given load case</td>
</tr>
<tr>
<td>getLoadCase</td>
<td>Load Case name</td>
<td>Load Case object</td>
<td>Gets the Load Case object with the</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>given name</td>
</tr>
<tr>
<td>getLoad</td>
<td>Load</td>
<td>force vector</td>
<td>Gets the load vector for a load</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>getLoad</td>
<td>Load, time value</td>
<td>force vector</td>
<td>Gets the load vector for a load</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 4.1.2b Event Flow Diagram for the Map Object
<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>getDeltaLoad</td>
<td>Gets the change in the load vector for a load, from the last accessed time value</td>
</tr>
<tr>
<td>getEqPD</td>
<td>Gets the analysis unknown for a prescribed disp</td>
</tr>
<tr>
<td>getValuePD</td>
<td>Gets the value for a prescribed disp</td>
</tr>
<tr>
<td>getDeltaValuePD</td>
<td>Gets the change in the value for a prescribed disp since the last access</td>
</tr>
<tr>
<td>getElStiff</td>
<td>Gets the stiffness matrix for an element</td>
</tr>
<tr>
<td>getResistingForce</td>
<td>Gets the resisting force vector for an element</td>
</tr>
<tr>
<td>getMinEventFactor</td>
<td>Gets the minimum event factor for all the elements</td>
</tr>
<tr>
<td>getMass</td>
<td>Gets the mass matrix for an element</td>
</tr>
<tr>
<td>getDamp</td>
<td>Gets the damping matrix for an element</td>
</tr>
<tr>
<td>updateDofGroups</td>
<td>Updates the nodes with array of incremental values (or time derivatives)</td>
</tr>
<tr>
<td>updateDofGroupsByTotal</td>
<td>Updates the nodes with array of absolute values (or time derivatives)</td>
</tr>
<tr>
<td>scaleLastIncBy</td>
<td>Scales the last increment in the nodes by a factor</td>
</tr>
<tr>
<td>commit</td>
<td>Commits the state of the elements and dofGroups</td>
</tr>
<tr>
<td>getOriginalEqNum</td>
<td>Gets the non-reordered analysis unknown associated with Degree of Freedom Component Description</td>
</tr>
<tr>
<td>numEq</td>
<td>Gets the number of analysis unknowns</td>
</tr>
<tr>
<td>minEqNum</td>
<td>Returns the smallest analysis unknown that is associated to the given one.</td>
</tr>
<tr>
<td>ConnectedTo</td>
<td>Gets a list of all analysis unknowns connected to the given one.</td>
</tr>
<tr>
<td>getEqNum</td>
<td>Gets the analysis unknown associated with a Displacement Boundary Condition or Prescribed Displacement object</td>
</tr>
</tbody>
</table>

| Table 4.1.2 Map Interface Definition |
4.1.3 Analysis

The responsibility of the Analysis object is to collect the various properties of a model for a given state and loading, perform the analysis, and post the appropriate response quantities to the Model. The Analysis object deals only with analysis unknowns. It has no knowledge of nodes or degrees of freedom. Element and nodal properties are transmitted to the Analysis objects by the Map, and results are passed back through the Map in terms of these analysis unknowns. The Analysis object principally interacts with the Map object and typically has no direct access to the Model.

An Analysis object does not process the homogeneous multi-point constraints; these are handled by the Constraint Handler. It does, however, have to handle the non-homogeneous single point displacement boundary conditions. This decision was made because a non-homogeneous displacement boundary condition causes adjustments in both the left and right hand side of the equation of equilibrium. Analysis is the only object in control of both sides of the equations simultaneously. So it is left to the Analysis object to process the displacement boundary conditions efficiently.

The Analysis object is responsible for choosing how the constraints are to be processed, and how the analysis unknowns are ordered. This is accomplished by selecting the appropriate Constraint Handler and Reordering Handler. The Handlers are pre-defined objects that take care of the constraints and reordering. The Analysis object need not be concerned how the Handlers perform their tasks. A Matrix Handler is also chosen by the Analysis to set up the global property matrices according to the
analysis unknown connectivity represented in the Map object if such matrices are needed.

There is no general rule for the requirements of the public interface of the Analysis objects. The interface only needs to provide the methods necessary to perform the specific type of analysis represented. For example, a linear static analysis object may only provide the analyze method.

An Analysis object would typically perform a combination of some of the following tasks:

2. From these iterators, the Analysis object can initialize the elements, and assemble the stiffness, mass, damping, and applied loads of the model as necessary. The Analysis would iterate through the collections one by one, and request the Map to transform the property matrix (vector) associated with the object. The property matrix (vector) can then be assembled by the Analysis object into the global matrix (vector) or used directly, as in a frontal scheme. The choice and handling of the global property matrices and vectors is entirely up to the Analysis object.

3. The property matrices and vectors for the model must be modified if displacement boundary conditions exist. The affected analysis unknown and the prescribed value is obtained from the Map object.
4. With the properties of the model formed, the Analysis object can solve for the necessary response quantities. These may consist of displacements, velocities, accelerations, etc.

5. The updating of the state of the model with the newly derived response quantities is a multi-step process. Through the Map, the state of the Model can be updated, committed, and reported. The components of the Model are required to keep track of the current-committed state, and an increment from the current-committed state. Together they form the total state. For an iterative solution procedure, each iteration adds to or subtracts from (updates) the increment in the state of the Model. These trial states are not part of the solution path. When the Analysis is satisfied, the state of the Model is committed. The committed state becomes part of the solution path. A commit implies that the committed state must be put into accord with the total state, and the increment in state is set to zero. A commit defines a family of possible states for the Model, and an update selects a state in the family.

6. Elements also provide event factors for event-to-event style analysis. Nodes can scale back the increment in response to the last committed state by a given factor.

7. Elements can also provide their internal resisting forces to allow the Analysis object to check for force equilibrium. Element resisting forces include the effects of element loads. The resisting forces are obtained through the Map object.
The event flow diagram for the Analysis class is presented in Figure 4.1.3. The diagram displays the possible flow of events between the Analysis class, users of the Analysis interface, and classes which the Analysis object uses. The arrow is drawn in the direction of the message.

![Event Flow Diagram for Analysis Class](image)

Figure 4.1.3 Event Flow Diagram for Analysis Class

The sole user of the Analysis class is the Modeler/Analyst who forms the Model and requests the analysis. As a minimum, a command to analyze the Model must be provided by Analysis. This alone may be sufficient for some types of analysis such as linear-static, but for more complex types of analysis, methods such as "proceed to the next event" or "proceed to the next time step" would be provided.

To gain access to the loads on the model, the Analysis object requests the iterators for the collection of Loads, Prescribed Displacement Values, and Initial Element States from the Map object. The Prescribed Displacement Value object, which corresponds
to a Boundary Condition object in the Model, provides its value for a specific time. The Initial Element State will initialize the Element to which it is related. The values for the Loads are obtained through the Map object.

The Interface Definition for the Analysis class is given in Table 4.1.3. This represents a minimum interface for an Analysis class. Each specific type of Analysis will likely add to this.

<table>
<thead>
<tr>
<th>Method</th>
<th>Arguments</th>
<th>Return</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction</td>
<td>Model, Load Case, other parameters unique to the type of analysis</td>
<td></td>
<td>Create an Analysis object</td>
</tr>
<tr>
<td>analyze</td>
<td>name of the load case</td>
<td></td>
<td>Analyze the Model for a specific Load Case</td>
</tr>
</tbody>
</table>

Table 4.1.3 Analysis Interface Definition

4.2 Components of the Model

A Model object represents the finite element model to be analyzed. It consists of Nodes, Elements, Load Cases, Displacement Boundary Conditions, and Constraint objects. Each of these objects in turn is composed of several types of lower-level objects. This section describes the design of the component objects that, together, make up the model.

4.2.1 Degree of Freedom Group (Node)

The traditional view of a Node in the Finite Element Method is augmented somewhat in the context of the object model design by making a Node a specialization of the object
Degree of Freedom Group. A Degree of Freedom Group is responsible for maintaining collections of degrees of freedom (both scalar and vector quantities) of different types. The degrees of freedom maintain their last committed value and the increment from that to the current value. In addition, they can maintain time derivative values (e.g. displacement, velocity, and acceleration). A Vector Degree of Freedom stores its values as Vectors. A Vector Degree of Freedom also has an associated Coordinate System that describes the number and orientation of the intended unknown components. For example, a 2D Rectangular Coordinate System would indicate the direction of the two potential unknowns. A Node is a Degree of Freedom Group that also has a position in space. Nodes and Degree of Freedom Groups are maintained in collections by the Model object.

The Entity Relationship diagram for the Degree of Freedom Group object is given in Figure 4.2.1a. A Model contains many Degree of Freedom Groups and Elements. Many Elements connect to many Degree of Freedom Groups. A Node is a specialization of a Degree of Freedom Group and has a location in space which is represented by a Point object. A Degree of Freedom Group may have many Degrees of Freedom. Degrees of Freedom are described by a Degree of Freedom Description. A Description has a Type (e.g. "translation") and a Coordinate System (e.g. 3D rectangular). A Degree of Freedom is either a Scalar Degree of Freedom or a Vector Degree of Freedom. A Vector Degree of Freedom uses Vectors to represent the committed and incremental values and their time derivatives. The committed and incremental values of the Scalar Degree of Freedom and its time derivatives are represented by scalars.
The Degree of Freedom Group creates and manages the Degree of Freedom objects under its control. The Degree of Freedom objects are created by the Degree of Freedom Group by indicating the type of Degree of Freedom that is required. The Degree of Freedom objects are completely hidden from other objects in the design. All communication is channeled through the Degree of Freedom Group. Requests to update, commit, and report on the state of a Degree of Freedom are accompanied by the Degree of Freedom Type to permit the Degree of Freedom Group to update the correct Degree of Freedom. To provide Map access to the collection of degrees of freedom in the Model, the Degree of Freedom Group can return an iterator to the list of the Descriptions of the Degrees of Freedom it contains. The Degrees of Freedom can store not only their values, but also the values of the time derivatives. The Degree of Freedom Group provides a means of modifying the increment for each of these values. These methods are used by Map to update the values of the Degrees of Freedom.
Freedom. Similarly, methods to access the values, both incremental and total (committed plus increment), are provided to the Elements to permit them to update their own state. Two other external methods are provided for Event to Event types of analysis. The Degree of Freedom Group can scale back the incremental values by a factor, and can also commit the current state. These two methods apply to all the Degrees of Freedom controlled by the Group. The specialization of a Node provides methods to set and report on the position of the Node in space.

A Degree of Freedom can be either a Vector Degree of Freedom or a Scalar Degree of Freedom. A Scalar Degree of Freedom maintains, and reports on, its committed and increment values and time derivatives as scalars. A Vector Degree of Freedom performs a similar task, but with Vector objects for its values and time derivatives. Vector Degree of Freedom objects have an associated Coordinate System which is used to indicate the number and orientation of the components of the Degree of Freedom.

Each Degree of Freedom object has a Degree of Freedom Description. The Degree of Freedom Description includes both the Degree of Freedom Type and the Coordinate System (if it is a Vector Degree of Freedom) for the Degree of Freedom. The Degree of Freedom Type object maintains the string of characters that represents the type of the Degree of Freedom. The Degree of Freedom Description also can report whether it is associated with a Scalar Degree of Freedom.

The Event Flow Diagram for the Degree of Freedom is given in Figure 4.2.1b. The Modeler or an Element can request the addition of a Degree of Freedom at a Group. The Modeler is the entity that creates the model and directs the analysis. The Map can
request a list of the Descriptions of the Degrees of Freedom the Group contains. The Degree of Freedom Group in turn requests the Degree of Freedom Description from the Degrees of Freedom. Map can also request the update or commit of the value of a Degree of Freedom or the scaling back of an increment. Finally, an Element can request the current value of a Degree of Freedom. The position of the Node is set on creation of the Node object.

Figure 4.2.1b Event Flow Diagram for the Degree of Freedom Group Object

The Interface Definition Tables for the Degree of Freedom Group, Node, Degree of Freedom, Degree of Freedom Description, Degree of Freedom Type, Scalar Degree of Freedom, and Vector Degree of Freedom classes are given in Tables 4.2.1a-g.
<table>
<thead>
<tr>
<th>Method</th>
<th>Arguments</th>
<th>Return</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction</td>
<td></td>
<td></td>
<td>creates an instance of Degree of Freedom Group</td>
</tr>
<tr>
<td>addDof</td>
<td>name and Coordinate System for a VectorDof; or just name for a ScalarDof</td>
<td></td>
<td>adds a Vector or Scalar Degree of Freedom object to the Group</td>
</tr>
<tr>
<td>scaleLastIncBy</td>
<td>factor</td>
<td></td>
<td>scales the increment value by a factor</td>
</tr>
<tr>
<td>commit</td>
<td></td>
<td></td>
<td>commits the current state of all the Degree of Freedoms</td>
</tr>
<tr>
<td>totalDof</td>
<td>Vector or Scalar total value or time derivative</td>
<td></td>
<td>sets the Vector or Scalar total value or time derivative</td>
</tr>
<tr>
<td>incDof</td>
<td>Vector or Scalar increment value or time derivative</td>
<td></td>
<td>adds to the Vector or Scalar increment value or time derivative</td>
</tr>
<tr>
<td>getIncValue,</td>
<td>Vector or Scalar increment value or time derivative</td>
<td></td>
<td>returns the Vector or Scalar increment value or time derivative</td>
</tr>
<tr>
<td>getIncValueDot,</td>
<td>Vector or Scalar increment value or time derivative</td>
<td></td>
<td>returns the current Vector or Scalar total value or time derivative</td>
</tr>
<tr>
<td>getIncValueDotDot</td>
<td>Vector or Scalar increment value or time derivative</td>
<td></td>
<td>returns the current Vector or Scalar total value or time derivative</td>
</tr>
<tr>
<td>comparison</td>
<td>DofGroup or a name</td>
<td></td>
<td>compares the name of the group to the name of the given group or the given name</td>
</tr>
<tr>
<td>getName</td>
<td>name of the group</td>
<td></td>
<td>returns the name of the group</td>
</tr>
<tr>
<td>getDescItr</td>
<td>itr to the list of Degree of Freedom Description objects</td>
<td></td>
<td>returns an iterator to the list of Degree of Freedom Description objects</td>
</tr>
</tbody>
</table>

Table 4.2.1a Degree of Freedom Group Interface Definition

<table>
<thead>
<tr>
<th>Method</th>
<th>Arguments</th>
<th>Return</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction</td>
<td>Point object</td>
<td></td>
<td>creates an instance of Node</td>
</tr>
<tr>
<td>getPosition</td>
<td></td>
<td>Point object</td>
<td>returns the location of the Node</td>
</tr>
</tbody>
</table>

Table 4.2.1b Node Interface Definition
Table 4.2.1c Degree of Freedom Interface Definition

<table>
<thead>
<tr>
<th>Method</th>
<th>Arguments</th>
<th>Return</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction</td>
<td>abstract class, therefor not used</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comparison</td>
<td>name</td>
<td>yes or no</td>
<td>compares the given name with the name of the Degree of Freedom Type</td>
</tr>
<tr>
<td>scaleIncBy</td>
<td>factor</td>
<td></td>
<td>scales the last increment value by a factor</td>
</tr>
<tr>
<td>commit</td>
<td></td>
<td></td>
<td>commits the current state</td>
</tr>
<tr>
<td>num_of_dof</td>
<td>integer</td>
<td></td>
<td>returns the number of axes in the Coordinate System</td>
</tr>
<tr>
<td>getDesc</td>
<td>Degree of Freedom Description object</td>
<td></td>
<td>returns the Degree of Freedom Description object</td>
</tr>
</tbody>
</table>

Table 4.2.1d Degree of Freedom Description Interface Definition

<table>
<thead>
<tr>
<th>Method</th>
<th>Arguments</th>
<th>Return</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction</td>
<td>Degree of Freedom Type and a Coordinate System</td>
<td></td>
<td>creates an instance of Degree of Freedom Description</td>
</tr>
<tr>
<td>nDof</td>
<td></td>
<td>integer</td>
<td>returns the number of axes in the Coordinate System</td>
</tr>
<tr>
<td>getType</td>
<td>Degree of Freedom Type</td>
<td></td>
<td>returns the Degree of Freedom Type</td>
</tr>
<tr>
<td>getCoordSys</td>
<td>Coordinate System</td>
<td></td>
<td>returns the Coordinate System</td>
</tr>
</tbody>
</table>

Table 4.2.1e Degree of Freedom Type Interface Definition

<table>
<thead>
<tr>
<th>Method</th>
<th>Arguments</th>
<th>Return</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction</td>
<td>name</td>
<td></td>
<td>creates an instance of Degree of Freedom Type with the type named in the argument.</td>
</tr>
<tr>
<td>Comparison</td>
<td>name</td>
<td>yes or no</td>
<td>compares the given name with the name of the object</td>
</tr>
<tr>
<td>getName</td>
<td>name</td>
<td></td>
<td>returns the name of the Type</td>
</tr>
<tr>
<td>setToScalar</td>
<td></td>
<td></td>
<td>sets the type to scalar</td>
</tr>
<tr>
<td>isScalar</td>
<td></td>
<td>yes or no</td>
<td>reports whether the associated Dof is a Scalar</td>
</tr>
</tbody>
</table>

Table 4.2.1e Degree of Freedom Type Interface Definition
Table 4.2.1f Scalar Degree of Freedom Interface Definition

<table>
<thead>
<tr>
<th>Method</th>
<th>Arguments</th>
<th>Return</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction</td>
<td>name</td>
<td></td>
<td>creates an instance of a Scalar Degree of Freedom object</td>
</tr>
<tr>
<td>scaleIncBy</td>
<td>factor</td>
<td></td>
<td>scales the last increment value by a factor</td>
</tr>
<tr>
<td>commit</td>
<td></td>
<td></td>
<td>commits the current state</td>
</tr>
<tr>
<td>incDof</td>
<td>Scalar increment value or time derivative</td>
<td></td>
<td>adds to the Scalar increment value or time derivative</td>
</tr>
<tr>
<td>totalDof</td>
<td>Scalar total value or time derivative</td>
<td></td>
<td>sets the Scalar total value or time derivative</td>
</tr>
<tr>
<td>getSIncValue</td>
<td>Scalar increment value or time derivative</td>
<td></td>
<td>returns the Scalar increment value or time derivative</td>
</tr>
<tr>
<td>getValue</td>
<td>current Scalar total value or time derivative</td>
<td></td>
<td>returns the current Scalar total value or time derivative</td>
</tr>
</tbody>
</table>

Table 4.2.1g Vector Degree of Freedom Interface Definition

<table>
<thead>
<tr>
<th>Method</th>
<th>Arguments</th>
<th>Return</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction</td>
<td>name and Coordinate System</td>
<td></td>
<td>creates an instance of a Vector Degree of Freedom object</td>
</tr>
<tr>
<td>scaleIncBy</td>
<td>factor</td>
<td></td>
<td>scales the last increment value by a factor</td>
</tr>
<tr>
<td>commit</td>
<td></td>
<td></td>
<td>commits the current state</td>
</tr>
<tr>
<td>incDof</td>
<td>Vector increment value or time derivative</td>
<td></td>
<td>adds to the Vector increment value or time derivative</td>
</tr>
<tr>
<td>totalDof</td>
<td>Vector total value or time derivative</td>
<td></td>
<td>sets the Vector total value or time derivative</td>
</tr>
<tr>
<td>getInc</td>
<td>Vector increment value or time derivative</td>
<td></td>
<td>returns the Vector increment value or time derivative</td>
</tr>
<tr>
<td>getValue</td>
<td>current Vector total value or time derivative</td>
<td></td>
<td>returns the current Vector total value or time derivative</td>
</tr>
</tbody>
</table>

4.2.2 Element

The primary responsibilities of an Element are to provide the Analysis with the current linearized stiffness, mass, damping, and resisting force. An actual Element object is a subclass of the abstract Element class. Each member object represents a specific type
of finite element. The Elements connect to Degree of Freedom Groups (or Nodes) and from them, obtain the current state of the Model.

An Element can be requested to update its state, commit its state, or calculate an event factor based on the current state of the Degree of Freedom Groups or Nodes. An Element is required to keep track of the current-committed state, and an increment from the current-committed state. Together they form the total state. The properties the Element reports are always consistent with the total state. An Element state may be updated through many trial states, through adjustment to the increment in state. When the analysis is satisfied, the Element state is committed. The committed state becomes part of the solution path. A commit implies that the committed state must be put into accord with the total state, and the increment in state is set to zero. A commit defines a family of possible states for the Element, and an update selects a state in the family. An event factor is the proportion of the increment in state a component of the Element can accommodate without violating the assumptions of its linearization. Elements make use of Constitutive Models of specific Materials, from which the required action-deformation relationships (e.g. stress-strain, moment-curvature, etc.) can be obtained. Elements can be loaded by Element Load objects that are specific to each type of element. The Element Load objects define the magnitude and type of load. The effects of the load are computed by the element itself, and are included in the resisting force calculation. An Element can also be given an initial state using an Initial Element State object. These effects are also included in the resisting force calculation.

The Entity Relationship Diagram for the Element object is given in Figure 4.2.2a. A Model has many Elements. Elements connect to many Degree of Freedom Groups or Nodes. An Element can be one of a number of types, such as a Truss Bar, Beam, 27
Node Brick, etc. A SuperElement is a specialization of an Element. It contains its own Model object and represents this sub-model as an element. Each specific type of Element may have any number of Element Loads for that type of Element. For example, a Beam Element object may be loaded by a Beam Point Load object, or a Beam Uniform Load object. An Element may have many Constitutive Models objects, calibrated by a Material object, to provide the basic action-deformation behavior. The initial state of a specific Element type is provided by the Initial Element State object for that type of Element object. The Initial Element State and Element Load objects are contained in Load Cases.

![Entity Relationship Diagram for the Element Object](image)

Figure 4.2.2a Entity Relationship Diagram for the Element Object

An Element is responsible for providing Map with its current linearized stiffness, mass, damping, and resisting force. These are given to the Map in the form of a matrix or vector that is augmented with pending transformations. The element is responsible for
creating the original matrix or vector, a transformation matrix, and a set of coordinate systems. When the transformation is applied, the resulting matrix or vector must be in terms of the coordinate systems specified by the element. These local coordinate systems need not be the same as the ones at the Degree of Freedom Groups or Nodes to which the Element attaches. In fact, the number of dimensions for the coordinate systems need not match. This allows a 2D element to be used in a 3D problem, and vice versa.

The internal workings of an Element vary widely depending on the type of Element represented. In general, an Element is responsible for keeping track of its state. An Element's state is defined as the aggregate of the states of the Element's Constitutive Models, the state of the loading applied to the Element, the initial state, and any state parameters that are unique to the type of Element. To update its state, an Element will request from the Degree of Freedom Groups their current total or incremental values. The Element is responsible for transforming these values into whatever form is needed. The Element then updates the state of its Constitutive Models and other internal data. Committing the element state is a similar task, but the total values of response from the Degree of Freedom Group must be used. This is because the state of the Degree of Freedom Groups will have already been committed, and thus the incremental values will be set to zero.

Elements can be given an Initial Element State and Element Loads. Both of these objects reside within a Load Case object. When the load case is applied, these objects send a message to the Element to which they apply, in order to register their presence. The Element is responsible for maintaining collections of applicable Element Loads and Elements Initial State objects. The effective loads from these objects are
communicated to the Analysis as part of the resisting force calculation. The element is responsible for calculating the effect of the Initial State and Element Loads, since the objects merely contain the defining parameters. Upon receipt of request for the resisting force, the Element calculates the effect of the nodal response values and adds to that the effect of the Element Initial State and Element Load objects.

The Event Flow Diagram for the Element objects is given in Figure 4.2.2b. The Analysis may request the Element to update its state, commit its state, or provide the event factor. The Map object can request the current linearized stiffness, mass, damping, or resisting force. An Element Load object registers its presence with the Element and can provide the data for the type and magnitude of load it represents. An Element Initial State object also registers its presence and can provide its initialization parameters upon request. Elements request the current incremental or total values of the degrees of freedom from the Degree of Freedom Groups or Nodes to which they are attached. To transform these values from the nodal coordinates to some local set, the Element object may request the transformation from the Coordinate System objects. Finally, the Element may request the Constitutive Model to initialize its state, update its state, provide its current total or incremental state, provide current stiffness, and provide its event factor.
Figure 4.2.2b Event Flow Diagram for the Element Objects

The Interface Definition for the Element class is given in Table 4.2.2.
<table>
<thead>
<tr>
<th>Method</th>
<th>Arguments</th>
<th>Return</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction</td>
<td>Unique to each element, but includes instances of Constitutive Models</td>
<td></td>
<td>Creates an instance of a specific type of Element</td>
</tr>
<tr>
<td>getStiff</td>
<td></td>
<td>Stiffness matrix augmented with transformation into known Coord Sys</td>
<td>Provides the current linearized stiffness</td>
</tr>
<tr>
<td>getDamp</td>
<td></td>
<td>Damping matrix augmented with transformation into known Coord Sys</td>
<td>Provides the current linearized Damping matrix</td>
</tr>
<tr>
<td>getMass</td>
<td></td>
<td>Mass matrix augmented with transformation into known Coord Sys</td>
<td>Provides the current linearized Mass matrix</td>
</tr>
<tr>
<td>getResistingForce</td>
<td></td>
<td>Load vector augmented with Coord Sys</td>
<td>Provides the current resisting force, including the initial state and element loads</td>
</tr>
<tr>
<td>updateState</td>
<td></td>
<td></td>
<td>Causes the Element to update its state from the Nodes</td>
</tr>
<tr>
<td>getEventFactor</td>
<td></td>
<td>Event Factor</td>
<td>Returns the current event factor</td>
</tr>
<tr>
<td>initialize</td>
<td>Unique to each type of Element</td>
<td></td>
<td>Announces the presence of an Initial Element State</td>
</tr>
<tr>
<td>commitState</td>
<td></td>
<td></td>
<td>Commits the current state of the Element</td>
</tr>
<tr>
<td>getConnectingDof</td>
<td></td>
<td>list of dof</td>
<td>Returns a list of dof to which the element attaches</td>
</tr>
</tbody>
</table>

Table 4.2.2 Element Interface Definition

4.2.3 Material, Action/Deformation, and Constitutive Model

A Constitutive Model object defines the nature of the relationship between measures of action and deformation (such as stress and strain). These measures are defined by Action/Deformation objects. The Material object provides data to the Constitutive Model. For example, a Constitutive Model might be one-dimensional-elastic-perfectly-plastic, the Action/Deformation object would be 1D-stress-strain, and a Material could be A36-steel. The Material object would provide the modulus of Elasticity and the yield stress to the Constitutive Model object. An Element may be composed of many...
Constitutive Model objects. A Constitutive Model can initialize, update, commit, and report on its state at the request of an Element. A Constitutive Model is required to keep track of the current-committed state, and an increment from the current-committed state. Together they form the total state. The properties the Constitutive Model reports are always consistent with the total state. A Constitutive Model state may be updated through many trial states. When the Element is satisfied, the Constitutive Model state is committed. The committed state becomes part of the solution path. A commit implies that the committed state must be put into accord with the total state, and the increment in state is set to zero. A commit defines a family of possible states for the Constitutive Model, and an update selects a state in the family. An event factor is the proportion of the increment in state the Constitutive Model can accommodate without violating the assumptions of its linearization.

The Entity Relationship Diagram for the Material, Action/Deformation, and Constitutive Model classes is shown in Figure 4.2.3a. An Element may have many Constitutive Models. A Constitutive Model is calibrated by a Material. Elements and Constitutive Models use an Action/Deformation object to transmit values of action and deformation to each other. A Constitutive Model is an abstract class, and is subclassed into further abstract classes as 1D-Stress-Strain, or 2D-Plane-Stress, etc. This initial subclassing is based on the type of Action/Deformation object used by the class. The Constitutive Model subclasses are further subclassed into concrete classes. As shown in the diagram, the 2D-Plane-Stress class is subclassed as 2D-Linear-Elastic, or 2D-Elastic-Perfectly-Plastic, etc.; a Material can be A36-Steel, 3 ksi Concrete, etc. The Action/Deformation hierarchy mirrors the Constitutive Model hierarchy to provide the Constitutive Model with a measure of action and deformation.
A Constitutive Model object provides public methods to update state, commit state, report the current state, report the current linearization, give an event factor, and set itself to an initial state. A Constitutive Model defines the type of Action/Deformation object that is used in the communication with the Element. For example, all one-dimensional stress-strain constitutive models use a 1D-Stress-Strain Action/Deformation object. The 1D-Stress-Strain Action/Deformation object holds the action and deformation as $[\sigma]$ and $[\varepsilon]$, respectively. A 2D-Plane-Stress Action/Deformation object defines the action and deformation as $<\sigma_x, \sigma_y, \tau_{xy}>^T$ and $<\varepsilon_x, \varepsilon_y, \gamma_{xy}>^T$, respectively. This definition is the basis for subclassing from the Constitutive Model class. All subclasses from this level must conform to the use of the specific subclass of Action/Deformation. A specific type of Element would be associated with this level of subclassing as well to ensure that the subclass of
Action/Deformation the Element expects remains unchanged regardless of additional Constitutive Model subclassing.

The state of the Constitutive Model object is updated by either specifying a new total state of deformation (i.e. update by total), or by specifying the new increment in deformation from the last committed state (update by increment). For an update by total, the implied increment from the last committed state is calculated by the Constitutive Model. When the Constitutive model is committed, the committed state is set to the current state, and the increment is set to zero.

A Material object is responsible for providing the data of the material it represents to the Constitutive Model. The information required depends on the Constitutive Model. For example, a 1D-linear-elastic Constitutive Model may only request the Young's Modulus and Poison's Ratio, whereas a 1D-elastic-perfectly-plastic Constitutive Model would also request the Yield Stress. Thus, as the library of Constitutive Models grows, the interface for the Materials must also grow.

The Event Flow Diagram for the Material, Action/Deformation, and Constitutive Model objects is shown in Figure 4.2.3b. An Element can request a Constitutive Model to set the initial state, return the current state of the actions (total and incremental), define a new increment of deformation, commit the current state, return the current linearization, and return the current event factor. The Constitutive Model requests the parameters from the Material object. The Action/Deformation object is used by the Element and the Constitutive Model to convey the actions and deformations.
The Interface Definitions for the Constitutive Model, Action/Deformation, and Material classes are given in Tables 4.2.3a, 4.2.3b, and 4.2.3c, respectively.

<table>
<thead>
<tr>
<th>Method</th>
<th>Arguments</th>
<th>Return</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction</td>
<td>Parameters necessary to define the model, including the Material</td>
<td></td>
<td>Creates an instance of a Constitutive Model</td>
</tr>
<tr>
<td>setIncV</td>
<td>Action/Deformation object with an array of deformations</td>
<td></td>
<td>Sets the increment of the current strain state</td>
</tr>
<tr>
<td>setTotalV</td>
<td>Action/Deformation object with an array of deformations</td>
<td></td>
<td>Sets the total current strain state</td>
</tr>
<tr>
<td>setInitialV</td>
<td>Action/Deformation object with an array of initial deformations</td>
<td></td>
<td>Sets the initial state</td>
</tr>
<tr>
<td>commit</td>
<td></td>
<td></td>
<td>Commits the state</td>
</tr>
<tr>
<td>getCurrentPlusDeltaS</td>
<td>Action/Deformation object with an array of total actions</td>
<td></td>
<td>Returns the total stress state</td>
</tr>
<tr>
<td>getCurrentCommittedS</td>
<td>Action/Deformation object with an array of incremental actions</td>
<td></td>
<td>Returns the last increment in stress state</td>
</tr>
<tr>
<td>getK</td>
<td>Constitutive matrix</td>
<td></td>
<td>Returns the current linearization</td>
</tr>
<tr>
<td>getEventFactorIncV</td>
<td>Action/Deformation object with an array of deformations</td>
<td>Event Factor</td>
<td>Returns the current event factor</td>
</tr>
<tr>
<td>getEventFactorTotalV</td>
<td>Action/Deformation object with an array of deformations</td>
<td>Event Factor</td>
<td>Returns the current event factor</td>
</tr>
</tbody>
</table>

Table 4.2.3a Constitutive Model Interface Definition
Table 4.2.3b Action/Deformation Interface Definition

<table>
<thead>
<tr>
<th>Method</th>
<th>Arguments</th>
<th>Return</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction</td>
<td></td>
<td></td>
<td>Creates an instance of a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Action/Deformation</td>
</tr>
<tr>
<td>putAction</td>
<td>array of actions</td>
<td></td>
<td>stores actions</td>
</tr>
<tr>
<td>getAction</td>
<td>array of actions</td>
<td></td>
<td>reports actions</td>
</tr>
<tr>
<td>putDeformation</td>
<td>array of deformations</td>
<td></td>
<td>stores deformations</td>
</tr>
<tr>
<td>getDeformation</td>
<td>array of deformations</td>
<td></td>
<td>reports deformations</td>
</tr>
</tbody>
</table>

Table 4.2.3c Material Interface Definition

<table>
<thead>
<tr>
<th>Method</th>
<th>Arguments</th>
<th>Return</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction</td>
<td>Any parameters necessary to define the material</td>
<td></td>
<td>Creates an instance of a Material</td>
</tr>
<tr>
<td>getYM</td>
<td></td>
<td>Young's Modulus</td>
<td>Returns the Young's Modulus</td>
</tr>
<tr>
<td>getPoison</td>
<td></td>
<td>Poison's Ratio</td>
<td>Returns the Poison's Ratio</td>
</tr>
<tr>
<td>getCompYield</td>
<td></td>
<td>Compressive Yield Stress</td>
<td>Returns the Compressive Yield Stress</td>
</tr>
<tr>
<td>getTenYield</td>
<td></td>
<td>Tensile Yield Stress</td>
<td>Returns the Tensile Yield Stress</td>
</tr>
</tbody>
</table>

4.2.4 Constraint

Collectively, the Constraint objects are responsible for representing the homogeneous multi-point constraints between the Degree of Freedom Components contained within a Model. A single Constraint object represents a single equation of constraint. A Degree of Freedom Component may represent an entire Scalar Degree of Freedom or just one component of a Vector Degree of Freedom. The processing of these constraints is accomplished by the Constraint Handler. The Constraint objects collect and report on the constraints themselves. Symbolically, the constraint equations are in the form of:

\[C \, d = 0 \]

where \(d \) represents a vector of the degree of freedom components in the Model, \(0 \) is a vector of zeros, and \(C \) is a sparse matrix of constants that represent the relationship.
between the degree of freedom components. There are more degree of freedom components than there are equations of constraint. The Constraint objects are held in a collection by the Model. Additionally, the Constraint object identifies Degree of Freedom Components that must be retained by the Constraint Handler in the final set of equations used by the Analysis. This feature is provided to ensure that Degree of Freedom Components involved in displacement boundary conditions, and other operations the Analysis handles, are not constrained out by the Constraint Handler.

The Entity Relationship Diagram for the Constraint object is given in Figure 4.2.4a. A Model has many Constraint objects. A Constraint object relates many Degree of Freedom Component Descriptions together to form an equation of the constraint matrix C.

![Figure 4.2.4a Entity Relationship Diagram for the Constraint Object](image)

The Constraint object is responsible for reporting the equation of constraint it represents, and its collection of retained Degree of Freedom Components.

The Event Flow Diagram for the Constraint object is given in Figure 4.2.4b. The Modeler builds an equation of constraint in terms of Degree of Freedom Component Descriptions and passes them to the Constraint object. The Modeler may also designate a Degree of Freedom Component to be retained by the Constraint Handler.
Once the set of constraints are complete, the Constraint Handler may ask for the constraint equation and retained Degree of Freedom Components, to produce the initial mapping between Model Degrees of Freedom and Analysis unknowns.

![Event Flow Diagram for the Constraint Object](image)

Figure 4.2.4b Event Flow Diagram for the Constraint Object

The Interface Definition for the Degree of Freedom Component Description and the Constraint class is given in Tables 4.2.4a and 4.2.4b respectively.

<table>
<thead>
<tr>
<th>Method</th>
<th>Arguments</th>
<th>Return</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction</td>
<td>type, group, and axis number</td>
<td>creates an instance of single dof description</td>
<td></td>
</tr>
<tr>
<td>comparison</td>
<td>Single dof description</td>
<td>compares with another single dof desc object</td>
<td></td>
</tr>
<tr>
<td>getType</td>
<td></td>
<td>dof type</td>
<td>returns the type</td>
</tr>
<tr>
<td>getGroup</td>
<td></td>
<td>dof group</td>
<td>returns the group</td>
</tr>
<tr>
<td>getDofNum</td>
<td></td>
<td>integer</td>
<td>returns the axis number</td>
</tr>
</tbody>
</table>

Table 4.2.4a Degree of Freedom Component Description Interface Definition
Table 4.2.4b Constraint Interface Definition

<table>
<thead>
<tr>
<th>Method</th>
<th>Arguments</th>
<th>Return</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction</td>
<td>equation of constraint</td>
<td></td>
<td>creates an instance of Constraint</td>
</tr>
<tr>
<td>addRetained</td>
<td>dof component</td>
<td></td>
<td>specifies a dof component to be retained</td>
</tr>
<tr>
<td>getRow</td>
<td></td>
<td>constraint equation</td>
<td>returns the equation of constraint</td>
</tr>
<tr>
<td>getRetained</td>
<td></td>
<td>list of dof components</td>
<td>returns the list of dof components to be retained</td>
</tr>
</tbody>
</table>

4.2.5 Displacement Boundary Condition

A Displacement Boundary Condition object represents a non-homogeneous single point constraint that will have a value assigned to it in each Load Case by a Prescribed Displacement object. A single point constraint may instead be represented within the Constraint object, but this restricts its value to zero for all Load Cases and instances in time. The Displacement Boundary Conditions are stored directly by the Model. The related values are stored in the Load Cases. Displacement Boundary Conditions are not processed by the Constraint Handler. They are handled directly by the Analysis.

The Entity Relationship Diagram for the Displacement Boundary Condition object is given in Figure 4.2.5a. A Model may have many Displacement Boundary Conditions. Each Displacement Boundary Condition refers to a Degree of Freedom Component Description. A Degree of Freedom Component may represent an entire Scalar Degree of Freedom or one component of a Vector Degree of Freedom.
The principal responsibility of the Displacement Boundary Condition object is to indicate to the Analysis, via the Map, which Degree of Freedom Components are to be assigned a value by the Load Cases.

The Event Flow Diagram for the Displacement Boundary Condition object is given in Figure 4.2.5b. The only event the object responds to is a request from the Map for the Degree of Freedom Component Description to which the Displacement Boundary Condition applies. Map will transform this to an analysis unknown for the Analysis.

The Interface Definition for the Displacement Boundary Condition class is given in Table 4.2.5.
Table 4.2.5 Displacement Boundary Condition Interface Definition

<table>
<thead>
<tr>
<th>Method</th>
<th>Arguments</th>
<th>Return</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction</td>
<td>dof component</td>
<td></td>
<td>creates an instance of Displacement Boundary Condition</td>
</tr>
<tr>
<td>getDofComp</td>
<td></td>
<td>dof component</td>
<td>returns the affected dof component</td>
</tr>
</tbody>
</table>

4.2.6 Load Case

A Load Case is responsible for maintaining Load objects, Prescribed Displacements, and Initial Element States. The Load objects may be either Nodal Loads or Element Loads. In either case, the load vector is given to the Map object augmented with the transformations and coordinate systems used to represent the load vector. Nodal loads may either be related to Scalar or Vector Degrees of Freedom at a Degree of Freedom Group or Node. Element loads are related to the Element to which they apply, and are only responsible for providing the Element with the magnitude and type of element load. The Element itself performs all calculations. A Prescribed Displacement object provides the time varying value for a Boundary Condition in the Model. Initial Element States contain the parameters that describe the initial state of a specific instance of a type of Element. A Load Case object maintains the collections of Loads, Prescribed Displacements, and Initial Element State objects under its control, and provides access to these collections to the Analysis object, via the Map.

The Entity Relationship Diagram for the Load Case object is given in Figure 4.2.6a. A Model may have many Load Cases. A Load Case consists of many Prescribed Displacements, Loads, and Initial Element States. A Prescribed Displacement defines a value and a Time Function at a Degree of Freedom Component. A Load may either be
a Degree of Freedom Load or an Element Load. A Load defines an associated Time Function for its values. An Element Load is of a type related to, and applied to, a specific type of Element (e.g. Truss Bar Load for a Truss Bar Element). An Initial Element State is also of a specific type related to, and applied to, a specific type of Element. A Degree of Freedom Load is either a Scalar or Vector Load depending on the type of the Degree of Freedom to which it applies. A Vector Load has a Vector object to represent its value. A Scalar Load is represented by a scalar.

![Entity Relationship Diagram for the Load Case Object](image)

Figure 4.2.6a Entity Relationship Diagram for the Load Case Object

The Load Case object is responsible for maintaining collections of Prescribed Displacements, Loads, and Initial Element States. The Load Case has a name which
identifies it to the Analysis object. The Load Case provides the Analysis object with access to the collections of the Loads, Prescribed Displacements, and Initial Element States when requested. The Prescribed Displacement object is responsible for providing its value (at a specific time value) to the Map object. The Map object converts the Degree of Freedom Component Description, provided by the Prescribed Displacement, into an analysis unknown number for the Analysis object. Degree of Freedom Loads are responsible for providing the Map object with their load vector (for a specific time value). The load vector must be augmented with the coordinate systems in which it is defined in order to allow the Map object to transform it to analysis unknowns for the Analysis object. The Element Load object does not generate the loads, but simply registers its presence to the appropriate Element. Later, at the Element's request, the Element Load object supplies the current magnitude and type of load. The Element calculates the effect of the load and includes the equivalent nodal loads in its resisting force calculation. Similarly, an Initial Element State registers its presence to the appropriate Element and provides its data to it when requested. A Time Function object stores scaling factors and the associated values of time. It uses these as interpolation points to provide factors for any given value of time.

The Event Flow Diagram for the Load Case object is given in Figure 4.2.6b. The main program creates and adds Loads, Initial Element States, and Prescribed Displacement objects to the Load Case. The Analysis object requests access to the collections of these objects, in the form of iterators, to build the total load for the Load Case.
The Event Flow Diagram for the Prescribed Displacement object is given in Figure 4.2.6c. The Map object requests the Degree of Freedom Description that the Prescribed Displacement refers to, and also the value of the Prescribed Displacement at a certain value of time. The Prescribed Displacement object requests the time factor from the Time Function object to which it refers. It will use this as a scaling factor to be applied to its base value of displacement.

The Event Flow Diagram for the Degree of Freedom Load object is given in Figure 4.2.6d. The Map object requests the Degree of Freedom Description and the value of the load vector. The load vector is augmented with the coordinate systems in which it is defined. The Degree of Freedom Load object requests the time factor from the Time
Function object. It will use this number as a scaling factor to be applied to its base value of load.

![Figure 4.2.6d Event Flow Diagram for the Degree of Freedom Load Object](image)

The Event Flow Diagram for the Element Load object is given in Figure 4.2.6e. The Map object requests the establishment of the Element Load at a certain value of time. The Element Load object requests the time factor from the Time Function object. It will use this number as a scaling factor to be applied to its base load value. The Element Load announces its presence to the Element to which it applies. This Element later requests the defining data of the Element Load object. Since the Element Load object is defined for a specific type of Element, the protocol for the requesting of data is unique to the type of Element involved.

![Figure 4.2.6e Event Flow Diagram for the Element Load Object](image)
The Event Flow Diagram for the Initial Element State object is given in Figure 4.2.6f. A Map object requests the Initial Element State object to perform the initialization. The Initial Element State registers its presence to the Element to which it applies. This Element later requests the defining data of the Initial Element State object. Since the Initial Element State object is defined for a specific type of Element, the protocol for the requesting of data is unique to the type of Element involved.

![Event Flow Diagram for the Initial Element State Object](image)

Figure 4.2.6f Event Flow Diagram for the Initial Element State Object

The Interface Definitions for the Load Case, Load, Prescribed Displacement, Initial Element State, and Time Function objects are given in Tables 4.2.6a-e.
<table>
<thead>
<tr>
<th>Method</th>
<th>Arguments</th>
<th>Return</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction</td>
<td>Load case name</td>
<td></td>
<td>creates an instance of Load Case</td>
</tr>
<tr>
<td>addLoad</td>
<td>Load object</td>
<td></td>
<td>adds a Load object</td>
</tr>
<tr>
<td>addPresDisp</td>
<td>Prescribed Displacement object</td>
<td></td>
<td>adds a Prescribed Displacement object</td>
</tr>
<tr>
<td>addInitElSt</td>
<td>Initial Element State object</td>
<td></td>
<td>adds an Initial Element State object</td>
</tr>
<tr>
<td>loadItr</td>
<td></td>
<td>Iterator for the Load objects</td>
<td>returns the iterator for the Load objects</td>
</tr>
<tr>
<td>presDispItr</td>
<td></td>
<td>Iterator for the Prescribed Displacement objects</td>
<td>returns the iterator for the Prescribed Displacement objects</td>
</tr>
<tr>
<td>initElStateItr</td>
<td></td>
<td>Iterator for the Initial Element State objects</td>
<td>returns the iterator for the Initial Element State objects</td>
</tr>
</tbody>
</table>

Table 4.2.6a Load Case Interface Definition

<table>
<thead>
<tr>
<th>Method</th>
<th>Arguments</th>
<th>Return</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction</td>
<td>Time Function, a dof Desc or Element</td>
<td></td>
<td>creates an instance of Load (either dof or Element)</td>
</tr>
<tr>
<td>getTF</td>
<td></td>
<td>time function</td>
<td>returns the time function for the load</td>
</tr>
<tr>
<td>getLoad</td>
<td>time value</td>
<td>load vector augmented with Coord Systems in which it is defined</td>
<td>returns the load vector for a value of time</td>
</tr>
<tr>
<td>getDeltaLoad</td>
<td>time value</td>
<td>load vector augmented with Coord Systems in which it is defined</td>
<td>returns the change in the load vector, for a value of time, since the last access</td>
</tr>
</tbody>
</table>

Table 4.2.6b Load Interface Definition
Table 4.2.6c Prescribed Displacement Interface Definition

<table>
<thead>
<tr>
<th>Method</th>
<th>Arguments</th>
<th>Return</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction</td>
<td>Time Function, a dof Desc, and a value</td>
<td></td>
<td>creates an instance of Prescribed Displacement</td>
</tr>
<tr>
<td>getDof</td>
<td></td>
<td>Dof Component Description</td>
<td>returns the dof component description to which the value applies</td>
</tr>
<tr>
<td>getValue</td>
<td>value of time</td>
<td>displacement value</td>
<td>returns the value of displacement for a given value of time</td>
</tr>
<tr>
<td>getDeltaValue</td>
<td>value of time</td>
<td>displacement value</td>
<td>returns the change in the value of displacement, for a given value of time, since the last access</td>
</tr>
</tbody>
</table>

Table 4.2.6d Initial Element State Interface Definition

<table>
<thead>
<tr>
<th>Method</th>
<th>Arguments</th>
<th>Return</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction</td>
<td>Element, and parameters that are unique to that type of element</td>
<td></td>
<td>creates an instance of a specific type of Initial Element State</td>
</tr>
<tr>
<td>initialize</td>
<td></td>
<td></td>
<td>announces its presence to the Element</td>
</tr>
<tr>
<td>getData</td>
<td></td>
<td>initial element state data</td>
<td>returns the initial element state data</td>
</tr>
</tbody>
</table>

Table 4.2.6e Time Function Interface Definition

<table>
<thead>
<tr>
<th>Method</th>
<th>Arguments</th>
<th>Return</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction</td>
<td>ordered pairs of time and value quantities</td>
<td></td>
<td>creates an instance of Time Function</td>
</tr>
<tr>
<td>getValue</td>
<td>value of time</td>
<td>scalar value</td>
<td>returns the (possibly interpolated) value for a given value of time</td>
</tr>
</tbody>
</table>

4.3 Handlers

The object design contains three classes of Handlers, which are used by the Analysis to manage the more complex tasks that are shared between many different types of
4.3.1 Constraint Handler

The Constraint Handler is responsible for processing the Constraint objects and providing the Map object with an initial mapping between the Model degrees of freedom and the analysis unknowns for the Analysis object. Conventional constraint handlers such as Transformation, Penalty Function, and Lagrangian Multiplier should be available, and new handlers can be created as needed by a particular analysis method.

In the Transformation Constraint Handler, the Constraint matrix C is converted by the Handler to a transformation matrix that relates all the degrees of freedom to a constrained set of degrees of freedom. The constrained set of degrees of freedom are numbered, and this initial mapping between the Model Degrees of Freedom and the Analysis unknowns is passed to the Map object. These transformations are applied when transforming element stiffnesses into those needed in the final set of analysis unknown.

For the Penalty Function Constraint Handler, the initial mapping between the Model Degrees of Freedom and the analysis unknowns is one-to-one, with no transformation.
The constraints are satisfied by the addition of the term $C^T \alpha C$ to the stiffness matrix. The preparation of the α matrix, and the multiplication of the additional term and its inclusion in the stiffness matrix, is the responsibility of the Analysis object.

For the Lagrangian Multiplier Constraint Handler, the initial mapping between the Model Degrees of Freedom and the analysis unknowns is one-to-one, with no transformation, but an additional set of analysis unknowns is set up by the Handler. These additional analysis unknowns represent the Lagrangian multipliers. The Analysis object is responsible for adding the constraint matrix to the stiffness matrix to satisfy the constraints.

The Entity Relationship Diagram for the Constraint Handler objects is given in Figure 4.3.1a. The Constraint Handler is created by the Analysis object and passed to the Map object. Upon creation, the Constraint Handler queries the Map to determine the complete list of Degrees of Freedom and obtains the C matrix, and the list of retained Degree of Freedom Components, from the Constraint object.

![Figure 4.3.1a Entity Relationship Diagram for the Constraint Handler Object](image-url)
The internal workings of the Constraint Handler object differ widely based on the method of constraint processing. All three methods query the Map to develop a complete list of the Degrees of Freedom of the Model. The Penalty Function Constraint Handler then assigns an analysis unknown to each Degree of Freedom and builds the one-to-one map. The Lagrangian Multiplier Constraint Handler queries the Constraint object to determine the number of equations of constraint and adds an extra analysis unknown for each equation of constraint.

The Transformation Constraint Handler obtains the complete constraint matrix from the Constraint object. For each equation of constraint, the Handler must identify a degree of freedom to be constrained out of the model. The Handler also requests from the Constraint object a list of the degree of freedom components that must be retained in the analysis unknowns. The Handler must ensure that these degree of freedom components are not selected to be constrained out of the problem.

The Event Flow Diagram for the Constraint Handler objects is given in Figure 4.3.1b. The Map object requests the initial mapping between the Model Degrees of Freedom and the Analysis unknowns. The Constraint Handler queries the Model object for the list of Degree of Freedom Groups. The Constraint Handler then asks for the list of Degrees of Freedom from each group in turn. Each Degree of Freedom is also asked to identify its components. The Constraint Handler may also request the Constraint object to supply its constraint matrix, the number of equations of constraint, and the list of degrees of freedom that are to be retained.
The Interface Definition for the Constraint Handler class is given in Table 4.3.1.

<table>
<thead>
<tr>
<th>Method</th>
<th>Arguments</th>
<th>Return</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction</td>
<td>Map object</td>
<td></td>
<td>Creates an instance of Constraint Handler</td>
</tr>
<tr>
<td>getNumEq</td>
<td></td>
<td>integer</td>
<td>Returns the number of analysis unknowns</td>
</tr>
<tr>
<td>getMap</td>
<td></td>
<td>dof to analysis unknown map</td>
<td>Returns the initial dof to analysis unknown mapping</td>
</tr>
</tbody>
</table>

Table 4.3.1 Constraint Handler Interface Definition

4.3.2 Reorder Handler

The Reorder Handler is responsible for providing the Map object with a re-ordered mapping between the model degrees of freedom and the analysis unknowns based on criteria provided by the Analysis object. To accomplish this task, the Reorder Handler
requires complete information regarding the Nodes, Elements, Constraints, and Displacement Boundary Conditions.

The Entity Relationship Diagram for the Reorder Handler objects is given in Figure 4.3.2a. The Reorder Handler is created by the Analysis object and passed to the Map object. Upon creation, the Reorder Handler queries the Model to determine the connectivity between the Degrees of Freedom. The Reorder Handler reorders the mapping between the Model Degrees of Freedom and the Analysis unknown in the Map object.

![Figure 4.3.2a Entity Relationship Diagram for the Reorder Handler Object](image)

The internal workings of the Reorder Handler object are unique to the type of reordering scheme the object represents. In general, the Reorder Handler will obtain lists of Elements, Nodes, and Displacement Boundary Conditions from the Model object. Also, it will obtain from the Map object the initial mapping and the constraint matrix in terms of the initial analysis unknowns.

The Event Flow Diagram for the Reorder Handler object is given in Figure 4.3.2b. The Map requests the revised mapping of the Model Degrees of Freedom and the Analysis
unknowns. The Reorder Handler requests the lists of Elements and Displacement Boundary Conditions from the Model. From each Element, the Reorder Handler requests the list of Degree of Freedom Descriptions to which the Element attaches. From the Displacement Boundary Condition, the Reorder Handler requests the Degree of Freedom Component with which it is associated. The Degree of Freedom Descriptions and Components are converted to initial analysis unknowns by the Map. Also the Map supplies the Reorder Handler with the constraint matrix in terms of initial analysis unknowns.

![Event Flow Diagram for the Reorder Handler Object](image)

Figure 4.3.2b Event Flow Diagram for the Reorder Handler Object

The Interface Definition for the Reorder Handler is given in Table 4.3.2.
<table>
<thead>
<tr>
<th>Method</th>
<th>Arguments</th>
<th>Return</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction</td>
<td>Map object, Model object, and the reordering parameters unique to the type of reordering scheme</td>
<td></td>
<td>Creates an instance of Constraint Handler</td>
</tr>
<tr>
<td>getNewOrder</td>
<td>list of analysis unknowns</td>
<td></td>
<td>Returns the list of analysis unknowns in the revised order</td>
</tr>
</tbody>
</table>

Table 4.3.2 Reorder Handler Interface Definition

4.3.3 Matrix Handler

The Matrix Handler is responsible for providing matrices and vectors of a specific type, initialized according to the connectivity of the Model. Each type of matrix and vector will have its own Matrix Handler class. The choice of Matrix Handler by the Analysis object defines the type of matrix or vector it will receive.

The Entity Relationship Diagram for the Matrix Handler objects is given in Figure 4.3.3a. The Matrix Handler is created by the Analysis object. Upon creation, the Matrix Handler queries the Map to determine the connectivity between the analysis unknowns.

![Figure 4.3.3a Entity Relationship Diagram for the Matrix Handler Object](image-url)
The internal workings of the Matrix Handler object are unique to the type of matrix and vector the object creates. In general, the Matrix Handler will query the Map object to determine the connectivity of the analysis unknowns. For example, the Matrix Handler for the column compacted matrix type will need to know the smallest analysis unknown connected to each analysis unknown to define the column heights for the matrix.

The Event Flow Diagram for the Matrix Handler object is given in Figure 4.3.3b. An Analysis object will request an initialized matrix or vector from the Handler. It in turn queries the Map for the analysis unknown connectivity, builds the required object, and returns it to the Analysis.

![Figure 4.3.3b Event Flow Diagram for the Matrix Handler Object](image)

The Interface Definition for the Matrix Handler is given in Table 4.3.3.

<table>
<thead>
<tr>
<th>Method</th>
<th>Arguments</th>
<th>Return</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction</td>
<td>Map object</td>
<td></td>
<td>Creates an instance of a Matrix Handler</td>
</tr>
<tr>
<td>setUpMatrix</td>
<td></td>
<td>initialized matrix</td>
<td>Creates and returns an initialized matrix</td>
</tr>
<tr>
<td>setUpVector</td>
<td></td>
<td>initialized vector</td>
<td>Creates and returns an initialized vector</td>
</tr>
</tbody>
</table>

Table 4.3.3 Matrix Handler Interface Definition
4.4 Utility Objects

The object design includes several utility objects that are used throughout the design. These include geometric objects such as Coordinate Systems, Vectors, and Points; numerical objects such as Matrices; and specialized augmented objects used to transmit element and load properties from the model to the analysis.

4.4.1 Geometry

The objects in the Geometry module are responsible for providing the means to represent and manipulate points and geometric vectors in space. The basic component of the geometry module is the Coordinate System. Coordinate Systems may be one, two, or three dimensional, polar, spherical, rectangular, etc. However, all Systems must be able to provide a transformation to and from the unrotated Three-Dimensional Rectangular System (Global System). Thus, it is possible to transform between any two Coordinate System objects. Points are created as an array of ordinates in a given Coordinate System. The position of a point is obtained by providing a Coordinate System. The Point will give its ordinates as an array with respect to the Coordinate System. Geometric Vectors are created by giving an array of ordinates in a Coordinate System that represent the head of the Geometric Vector. The tail is assumed to be at the origin of the Coordinate System. The position of a Geometric Vector is obtained by providing the vector with a Coordinate System. The Geometric Vector will give the ordinates of its head in that System. Vector addition and subtraction is defined, and Geometric Vectors can be multiplied by a scalar.
The Entity Relationship Diagram for the Geometry objects is given in Figure 4.4.1a. Geometric Vectors and Points are represented as ordinate arrays in a specific Coordinate System. Coordinate Systems can be 3D Rectangular, 2D Rectangular, etc.

![Diagram of Entity Relationship Diagram for the Geometry Objects](image)

Figure 4.4.1a Entity Relationship Diagram for the Geometry Objects

Externally, Points and Geometric Vectors are responsible for giving their ordinate arrays in any given Coordinate System. Additionally, Geometric Vectors can be added and subtracted, and multiplied by a scalar. Coordinate Systems must be able to provide transformation matrices, which transform ordinate arrays to and from the global Coordinate System. Additionally, they may provide transformation to and from other Coordinate System types.

Internally, Geometric Vectors and Points represent their position with respect to the global Coordinate System. When asked to provide their ordinate array in another Coordinate System, the transformation matrix from global is requested from that System.
The Event Flow Diagram for the Geometry objects is given in Figure 4.4.1b. The many users of the Geometry objects, such as a Node to locate a point in space or a Degree of Freedom to store the state of a response vector, are represented as three dots. The user will request the ordinate array in a given Coordinate System from a Geometric Vector or Point. In turn, the Geometric Vector or Point will request from the given Coordinate System the transformation from the Global System to the given System. The Geometric Vector or Point will then transform its ordinates to the given System and respond to the user's request.

![Figure 4.4.1b Event Flow Diagram for the Geometry Objects](image)

The Interface Definitions for the Coordinate System, Point, and Geometric Vector classes are given in Tables 4.4.1a-c.
Table 4.4.1a Coordinate System Interface Definition

<table>
<thead>
<tr>
<th>Method</th>
<th>Arguments</th>
<th>Return</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction</td>
<td>parameters unique to the specific System that relate it to the global system</td>
<td></td>
<td>Creates an instance of a specific type of Coordinate System</td>
</tr>
<tr>
<td>num_of_axis</td>
<td></td>
<td>number of axis</td>
<td>Returns the number of axis in the Coordinate System</td>
</tr>
<tr>
<td>trans_to_global</td>
<td>transformation matrix</td>
<td></td>
<td>Returns the transformation matrix to convert ordinates in this system to the Global</td>
</tr>
<tr>
<td>trans_from_global</td>
<td>transformation matrix</td>
<td></td>
<td>Returns the transformation matrix to convert ordinates in Global system to this system</td>
</tr>
</tbody>
</table>

Table 4.4.1b Point Interface Definition

<table>
<thead>
<tr>
<th>Method</th>
<th>Arguments</th>
<th>Return</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction</td>
<td>An array of ordinates and the associated Coordinate System</td>
<td></td>
<td>Creates an instance of Point</td>
</tr>
<tr>
<td>get_rep_in</td>
<td>Coordinate System</td>
<td>ordinate array</td>
<td>Returns the ordinate array of the Point in the given Coordinate System</td>
</tr>
<tr>
<td>lengthTo</td>
<td>Point</td>
<td>distance</td>
<td>Returns the distance between the given Point and this Point</td>
</tr>
</tbody>
</table>

Table 4.4.1c Geometric Vector Interface Definition

<table>
<thead>
<tr>
<th>Method</th>
<th>Arguments</th>
<th>Return</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction</td>
<td>An array of ordinates and the associated Coordinate System</td>
<td></td>
<td>Creates an instance of Geometric Vector</td>
</tr>
<tr>
<td>get_rep_in</td>
<td>Coordinate System</td>
<td>ordinate array</td>
<td>Returns the ordinate array of the head of the Geometric Vector in the given Coordinate System</td>
</tr>
<tr>
<td>add</td>
<td>Geometric Vector</td>
<td>Geometric Vector</td>
<td>Returns vector addition</td>
</tr>
<tr>
<td>subtract</td>
<td>Geometric Vector</td>
<td>Geometric Vector</td>
<td>Returns vector subtraction</td>
</tr>
<tr>
<td>multiply</td>
<td>Scalar</td>
<td>Geometric Vector</td>
<td>Multiplies a Geometric Vector by a Scalar</td>
</tr>
</tbody>
</table>
4.4.2 Numerical Objects

The purpose of the Numerical objects is to provide a minimal set of general and specialized vectors and matrices. It is not the intention of this dissertation to investigate high level algebra support. As discussed in Chapter 2, this has been investigated both by other finite element researchers and numerical analysts. The intention of the Numerical objects presented in this section is to determine what the finite element design requires of numerical objects. The selection of an appropriate library of Numerical objects can then be made rationally, and the implementation of the finite element program design can be adjusted accordingly. Although commercial numerical libraries, such as RogueWave, exist, for the sake of furthering research it is desirable to choose a library that is publicly available. Due to the universal acceptance of the FORTRAN based LAPACK library [2], a likely candidate is the C++ based LAPACK++ library [13], but the final decision is deferred for future work.

There are two types of users of the Numerical objects: small-scale and large-scale. The Map and Model objects are small-scale users. They use the Numerical objects to form and transmit element and nodal properties. These objects are small, generally full, possibly symmetric, and possibly contain blocks of zero or identity entries. The principal operations performed on these objects are addition, subtraction, transposition, and multiplication. The Analysis object, on the other hand, is a large-scale user. It may create large Matrix objects with highly specialized sparsities. These may include symmetric banded, column compacted, upper or lower triangular, general sparse, etc. In addition to the basic algebraic operations, the Analysis object requires these Matrix objects to efficiently perform complex numerical operations such as the solution of linear equations and the eigenvalue problem. To initialize these objects, the Analysis
uses the Matrix Handler associated with the type of matrix or vector needed. The Handler provides the matrix with the initialization data.

The design of the base abstract Matrix and Vector classes includes only the most fundamental methods common to all matrix and vector types. That is, access to the individual elements of the objects, addition, subtraction, multiplication, and transposition. During the actual implementation of the Numerical object hierarchy, each subclass of these abstract classes will add their own methods as the implementation demands. For example, the Analysis will require that the large-scale matrix objects be able to decompose themselves and solve $Ax = b$.

The Entity Relationship Diagram for the Numerical objects is given in Figure 4.4.2a. The abstract class Vector is a one dimensional vector that is a Full Vector. This can be extended to include sparse data types if required. The abstract class Matrix can be a Full Matrix, or Symmetric Matrix, etc. This also can be expanded, as required by the implementation, to include a more efficient library of sparse matrix types.

![Entity Relationship Diagram for the Numerical Objects](image)

Figure 4.4.2a Entity Relationship Diagram for the Numerical Objects

The Interface Definitions for the Vector and Matrix classes are given in Tables 4.4.2a and 4.4.2b.
<table>
<thead>
<tr>
<th>Method</th>
<th>Arguments</th>
<th>Return</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>element access</td>
<td>element position</td>
<td>number</td>
<td>Returns the element at a given position</td>
</tr>
<tr>
<td>element insertion</td>
<td>number and element position</td>
<td></td>
<td>Inserts a number in a given position</td>
</tr>
<tr>
<td>addition</td>
<td>Vector</td>
<td>Vector</td>
<td>Adds two Vectors</td>
</tr>
<tr>
<td>subtraction</td>
<td>Vector</td>
<td>Vector</td>
<td>Subtracts one Vector from another</td>
</tr>
<tr>
<td>multiplication</td>
<td>Vector, Scalar, or Matrix</td>
<td>Vector, or Matrix</td>
<td>Multiplies a Vector by another Vector, Scalar, or Matrix</td>
</tr>
</tbody>
</table>

Table 4.4.2a Vector Interface Definition

<table>
<thead>
<tr>
<th>Method</th>
<th>Arguments</th>
<th>Return</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>element access</td>
<td>element position</td>
<td>number</td>
<td>Returns the element at a given position</td>
</tr>
<tr>
<td>element insertion</td>
<td>number and element position</td>
<td></td>
<td>Inserts a number in a given position</td>
</tr>
<tr>
<td>addition</td>
<td>Matrix</td>
<td>Matrix</td>
<td>Adds two Matrices</td>
</tr>
<tr>
<td>subtraction</td>
<td>Matrix</td>
<td>Matrix</td>
<td>Subtracts one Matrices from another</td>
</tr>
<tr>
<td>transposition</td>
<td></td>
<td>Matrix</td>
<td>Returns the transpose of a Matrix</td>
</tr>
<tr>
<td>multiplication</td>
<td>Vector, Scalar, or Matrix</td>
<td>Vector, or Matrix</td>
<td>Multiplies a Matrix by another Matrix, Scalar, or Vector</td>
</tr>
</tbody>
</table>

Table 4.4.2b Matrix Interface Definition
4.4.3 Augmented Vector and Matrix Objects

As described in earlier sections, the Element and Nodal properties are transmitted to and from the analysis via matrices and vectors that are augmented with pending transformations. For example, an Element will internally produce its stiffness matrix k_e according to some elemental system known only to itself. To communicate the stiffness to the Analysis, the Element must generate a transformation matrix T_{e-l}^T that will transform the Matrix to the local Coordinate Systems at the Nodes. Furthermore, the Map will add a transformation matrix T_{l-n}^T to transform the Matrix to the actual nodal Coordinate Systems, and an additional transformation matrix T_{n-a}^T to transform the Matrix appropriately for the Analysis unknowns. Algebraically, this process of producing K_{ea}, an element stiffness matrix in terms of Analysis unknowns, is represented as:

$$K_{ea} = T_{n-a}^T T_{l-n}^T T_{e-l}^T k_e T_{e-l} T_{l-n} T_{n-a}$$

To reduce the number of computations, it is advantageous to combine the pending transformations into one before performing the matrix triple product.

The Augmented Vector and Augmented Matrix objects contain the original Vector or Matrix, and a collection of pending Transformation objects. The Transformation objects consist of a Block Matrix and a collection of Degree of Freedom Descriptions. The Description objects label the columns of the object that result from the application of all the pending Transformations. The Augmented Vector and Matrix objects provide the following public methods: a method to add additional transformations; a
method to provide the descriptions for the last transformation added; and a method which applies the pending transformations and produces the final vector or matrix.

The Block Matrix object is chosen to represent the transformation matrices to take advantage of the natural block structure that arises from the use of Geometric Vectors to define the nodal values. The collection of Degree of Freedom Descriptions associated with the transformation are in terms of complete Vector and Scalar Degrees of Freedom. Thus, the components of the Geometric Vectors represented in the columns and rows of the matrices must be contiguous. Therefore, the transformation matrices will have a natural block structure. For transformations between local and nodal Coordinate Systems, many of these blocks will be zero. Also, if some of the local and nodal systems are identical, the associated block will be the identity matrix. The Block Matrix object is capable of taking advantage of this structure.

The Entity Relationship Diagram for the Augmented Vector and Matrix objects is given in Figure 4.4.3a. An Augmented Vector has a single Vector object, and an Augmented Matrix has a single Matrix object. Augmented Vector and Matrix objects have many Transformations. The Transformations consist of a single Block Matrix object and many Degree of Freedom Descriptions.
Transformations are built up by defining a Block Matrix transformation and, one by one, the Degree of Freedom Descriptions. Transformations are added to the Augmented Vector or Matrix object. Transformation objects can pass their collection of Degree of Freedom Descriptions to the Augmented Vector or Matrix object. The Augmented Vector or Matrix object can supply the collection of Descriptions of the last Transformation to be added to the object.

The Event Flow Diagrams for the Augmented Vector or Matrix objects are given in Figures 4.4.3b-c. The users of the Augmented Vector and Matrix objects are the Elements and Loads that define the objects, the Map to additionally transform them, and the Analysis object to request the final transformed objects. Element or Load object defines the original Matrix or Vector, and adds a Transformation. They create the Transformations by defining a Block Matrix for the transformation and adding Degree of Freedom Descriptions. The Map object can retrieve the collection of Degree of Freedom Descriptions for the last Transformation, and adds additional Transformations. The Augmented Vector or Matrix requests the list of Degree of
Freedom Descriptions from its component Transformations. The Analysis object requests the final transformed Matrix or Vector.

Figure 4.4.3b Event Flow Diagram for the Augmented Vector Object

Figure 4.4.3c Event Flow Diagram for the Augmented Matrix Object
The Interface Definitions for the Augmented Vector, Augmented Matrix, Transformation, and Transformation Description classes are given in Tables 4.4.3a-d.

<table>
<thead>
<tr>
<th>Method</th>
<th>Arguments</th>
<th>Return</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction</td>
<td>Vector, and Transformation</td>
<td></td>
<td>Creates an instance of Augmented Vector and sets the initial vector and first Transformation</td>
</tr>
<tr>
<td>addT</td>
<td>Transformation</td>
<td></td>
<td>Adds an additional Transformation</td>
</tr>
<tr>
<td>getLastT</td>
<td>Transformation</td>
<td>Transformation</td>
<td>Gets the last Transformation</td>
</tr>
<tr>
<td>getId</td>
<td>Vector of integers</td>
<td></td>
<td>Gets the Analysis unknowns</td>
</tr>
<tr>
<td>getTransformedLoad</td>
<td>Vector</td>
<td></td>
<td>Applies the Transformations and returns the transformed vector</td>
</tr>
</tbody>
</table>

Table 4.4.3a Augmented Vector Interface Definition

<table>
<thead>
<tr>
<th>Method</th>
<th>Arguments</th>
<th>Return</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction</td>
<td>Matrix, and Transformation</td>
<td></td>
<td>Creates an instance of Augmented Matrix, and set the initial matrix and first Transformation</td>
</tr>
<tr>
<td>addT</td>
<td>Transformation</td>
<td></td>
<td>Adds an additional Transformation</td>
</tr>
<tr>
<td>getLastT</td>
<td>Transformation</td>
<td>Transformation</td>
<td>Gets the last Transformation</td>
</tr>
<tr>
<td>getId</td>
<td>Matrix of integers</td>
<td></td>
<td>Gets the Analysis unknowns</td>
</tr>
<tr>
<td>getTransformedK</td>
<td>Matrix</td>
<td></td>
<td>Applies the Transformations and returns the transformed matrix</td>
</tr>
</tbody>
</table>

Table 4.4.3b Augmented Matrix Interface Definition
<table>
<thead>
<tr>
<th>Method</th>
<th>Arguments</th>
<th>Return</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction</td>
<td>number of row and column blocks</td>
<td></td>
<td>Creates an instance of Transformation</td>
</tr>
<tr>
<td>addDesc</td>
<td>Transformation Description and a matrix, or just a Transformation Description</td>
<td></td>
<td>Adds a Transformation Description and associated transformation matrix, or just a Transformation Description</td>
</tr>
<tr>
<td>putT</td>
<td>Block Matrix</td>
<td></td>
<td>Defines a transformation matrix</td>
</tr>
<tr>
<td>getDescItR</td>
<td></td>
<td>list of Dof Descriptions</td>
<td>Gets the list of Dof Descriptions</td>
</tr>
<tr>
<td>getTrans</td>
<td></td>
<td>block matrix</td>
<td>Returns the complete transformation matrix</td>
</tr>
<tr>
<td>nRow</td>
<td></td>
<td>integer</td>
<td>Gets the number of rows for the transformation matrix</td>
</tr>
<tr>
<td>nCol</td>
<td></td>
<td>integer</td>
<td>Gets the number of columns for the transformation matrix</td>
</tr>
<tr>
<td>nRowBlock</td>
<td></td>
<td>integer</td>
<td>Gets the number of blocks along a row of the transformation matrix</td>
</tr>
<tr>
<td>nColBlock</td>
<td></td>
<td>integer</td>
<td>Gets the number of blocks along a column of the transformation matrix</td>
</tr>
</tbody>
</table>

Table 4.4.3c Transformation Interface Definition

<table>
<thead>
<tr>
<th>Method</th>
<th>Arguments</th>
<th>Return</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction</td>
<td>dof Type, Group, Coordinate System</td>
<td></td>
<td>Creates an instance of Transformation Description</td>
</tr>
<tr>
<td>getType</td>
<td></td>
<td>dof Type</td>
<td>Returns the dof Type</td>
</tr>
<tr>
<td>getGroup</td>
<td></td>
<td>DofGroup</td>
<td>Returns the dof Group</td>
</tr>
<tr>
<td>getCoOrdSys</td>
<td></td>
<td>Coordinate System</td>
<td>Returns the Coordinate System</td>
</tr>
<tr>
<td>nDof</td>
<td></td>
<td>integer</td>
<td>Returns the number of axes of the Coordinate System</td>
</tr>
</tbody>
</table>

Table 4.4.3d Transformation Description Interface Definition
5. Behavior of High Level Classes

The object model described in the previous chapter was implemented in the C++ programming language. A description of the public interfaces for the classes of objects is contained in the Appendix. The names of the classes are consistent with the design names except that the prefix "Fea" was added to each class name to avoid conflict with class names in other libraries. The purpose of the implementation is to validate the object model design and demonstrate that the design can be implemented. Although care has been taken to ensure a relatively efficient implementation, efficiency is not the primary objective. Future work in this area should address efficiency.

The primary aim of the implementation of the software design is the definition of the interfaces for the classes in the design. The interface defines how the methods of the class can be used, and what they return. The interface describes the behavior of a class, it does not describe how these tasks are to be accomplished. The details of how each specific method is implemented can be changed at any time without affecting any other
portion of the implementation. The interface, on the other hand, is difficult to change once it is established.

This chapter describes the behavior of the important high level objects in the design. The goal is to provide insight into the implementation, without getting into the details. The classes described in subsection of this chapter are Elements, Constitutive Models, Constraint Handler, Map, and Analysis. These sections are geared towards giving the future designer/programmer information on the features of the system, and how to use them.

A finite element program must grow to accommodate new demands. Common adaptations include new elements, constitutive models, and analysis algorithms. Since future programming tasks are likely to occur in these classes, their implementation is discussed in this chapter. The system design greatly reduces the complexity of these classes by providing a rich set of services and specifying the precise behavior of the classes. The specific services the system provides to these objects, and the services these objects must provide to the system, are presented.

While it is certainly possible to write new Map and Constraint Handler objects, it is unlikely that these objects will be reimplemented. The descriptions for the Map and Constraint Handler are provided here to show precisely how the objects were implemented. Together, they form the heart of the design. It is not necessary to know how they perform their actions in order to use and add to the program. The descriptions are provided to give a more thorough understanding of the system architecture.
5.1 Element

The primary responsibilities of an element are to provide the Analysis with the current linearized stiffness, mass, damping, and resisting force. A specific type of element object is a subclass of the abstract class Element. All subclasses of Element must share the same interface as the Element class. This section describes the behavior common to all Element objects.

5.1.1 Element Geometry

One of the first tasks an element must perform is to determine its geometry, and establish a set of local coordinate systems it will use in communication with the other components of the system. This generally involves querying the Nodes to which it attaches, to obtain the nodal positioning. For example, the following code fragment is taken from a beam element which attaches to nodeI and nodeJ, and is given a third point to define its roll angle.

```java
// nodeI and nodeJ are previously defined FeaNode objects
// point is a previously defined FeaGeoPoint object
// cs is a Fea3DRect object
// l is a double

// create a coord sys using nodeI, nodeJ, and point
cs = Fea3DRect(nodeI.getPosition(),nodeJ.getPosition(), point)

// get length between nodeI and nodeJ
l = (nodeI.getPosition()).lengthTo( nodeJ.getPosition() )
```

The first line creates a 3D rectangular coordinate system `cs` using the two Points obtained from the Nodes, and a third specified Point. The second line calculates the
length of the beam by obtaining the points from the Nodes and making use of the
lengthTo method provided by the Point from nodeI.

The Element will also query the Nodes to obtain the current deformed shape. The
Nodes provide the deformations as FeaGeoVectors. The Element uses its local
coordinate systems to interpret the vectors as ordinate arrays. For example, the
following code fragment obtains the increment in translational displacement from
nodeI and interprets it as an array of ordinates in the Element's local coordinate
system localCS.

```java
// nodeI is a previously defined FeaNode object
// localCS is a previously defined FeaCoOrdSys object
// vec is a FeaGeoVector object
// ord is a FeaFullVector object

// get current increment translation disp from nodeI
vec = nodeI.getIncV("translation")

// get the ordinates that represent vec in the localCS
ord = vec.get_rep_in(localCS)
```

5.1.2 Communication of Element Properties

The properties of the Element are transmitted to the Map via an FeaAugmentedMatrix.
An FeaAugmentedMatrix object holds the basic property matrix and a collection of
pending transformations. The transformations consist of a transformation matrix and a
collection of transformation descriptions which identify the basis of the matrix after the
transformation has been applied. The Element is responsible for providing the basic
property matrix and a transformation that would place the matrix in terms of coordinate
systems recognizable to the Map (i.e. FeaCoordinateSystem objects). For example, the
basic stiffness matrix for a 1D truss bar is a 1x1 matrix $k = \begin{bmatrix} AE/L \end{bmatrix}$, which is in terms of
Element's internal system of action/deformation measurement. To communicate the stiffness matrix to the Map, \(k \) must be transformed into a complete representation at all nodes using \(K = a'ka \), where \(a = \begin{bmatrix} 1 & -1 \\ \end{bmatrix} \) consists of two 1x1 partitions. The code for this is:

```cpp
// nodeI and nodeJ are previously defined FeaNode objects
// cs is a previously defined Fea1DRect object
// t1, t2, and k are 1 by 1 FeaFullMatrix objects

// define the transformation t with 1 by 2 blocks
FeaTransformation t(1, 2)

// define the first transformation block
t1(0, 0) = 1.0
\text{t.addDesc(FeaTransDesc("translation", nodeI, cs), t1)}

// define the second transformation block
t2(0, 0) = -1.0
\text{t.addDesc(FeaTransDesc("translation", nodeJ, cs), t2)}

// define the basic stiffness \( AE/l \)
k(0, 0) = A*E / l

// create the augmented matrix with k and t
FeaAugmentedMatrix(k, t)
```

The first line forms a `FeaTransformation` object \(t \) in which the transformations have a block structure of 1 by 2 (matrix \(a \) above). The blocks of the \(a \) matrix are defined as \(t1 \) and \(t2 \). These are added to \(t \) along with a `FeaTransDesc` object which defines the block. In this case, the first block refers to a "translation" degree of freedom at nodeI. The coordinate system \(cs \) is a one-dimensional rectangular system defined by the Element. It lies along the axis of the member and points from nodeI to nodeJ. The matrix \(k \) is then defined, and both \(k \) and \(t \) are used to form the `FeaAugmentedMatrix` object which represents the stiffness of the bar.
5.1.3 Element State

One of the principal functions of the Element is the tracking of its state. An Element is required to keep track of the current-committed state, and an increment from the current-committed state. Together they form the total state. The properties the Element reports are always consistent with the total state. An Element state may be updated through many trial states, through adjustment to the increment in state. When the analysis is satisfied, the Element state is committed. The committed state becomes part of the solution path. A commit implies that the committed state must be put into accord with the total state, and the increment in state is set to zero. A commit defines a family of possible states for the Element, and an update selects a state in the family. An event factor is the proportion of the increment in state a component of the Element can accommodate without violating the assumptions of its linearization.

The Element presents three methods for control of its state. Namely, `updateState`, `commit`, and `getEventFactor`. For an `updateState`, the Element retrieves the current response quantities at the Nodes to which it attaches, and interprets it to update its own increment in state. Since the Element may experience many such trial states, the trial states must be recoverable. A state commit implies that the state the Element interprets from the Nodes is on the solution path. Thus, the Element may be inelastic immediately after a commit. The state of the Element must remain unchanged during an event factor calculation. If an event factor calculation causes the Element to adjust the state of one of its sub components, it must return it to the previous state upon completion.
In dealing with the Constitutive Models and Nodes, the Element writer must be aware of these state terms. The Nodes can provide their current committed response quantities, the increment in the response quantities from the current committed, and the total. Likewise, the Constitutive Models can be updated by specifying an addition to the increment in state, or by specifying a new total state, which updates the incremental state. An Element writer is free to select whichever form is more convenient. If the Element writer chooses to obtain the total response quantities from the Nodes, it is likely that the Constitutive Model will be updated by specifying a new total state in deformation. Whereas if the Element writer obtains the increment in response quantities from the Nodes, adding to the increment of the Constitutive Model would likely be more convenient. In either case, only the increment in state is modified; the committed state remains unchanged.

5.1.4 Action/Deformation

Constitutive Model objects are used by the Element to provide the relationship between, and track the state of, action and deformation within the Element. The Element must use a specific type of Action/Deformation object in its communication with the Constitutive Model object. For example, all the Constitutive Models for a moment-rotation Constitutive Model (FeaMRLinearElastic, FeaMRElasticPlastic, etc.) use a moment-rotation Action/Deformation object. Each Action/Deformation object has its own methods to get and set the action and deformation. For instance, the following code creates a FeaMRActDef object ad, sets the rotation to 0.001, and uses it to update the state of a FeaMRElasticPlastic object cm.
// cm is a previously defined moment/rotation (MR) constitutive model

FeaMRActDef ad // define the MR action/deformation object
ad.setR(0.001) // set the rotation to 0.001
cm.setTotalV(ad) // update state of cm to a rotation of 0.001

Likewise the current committed moment value is obtained as:

// cm is a previously defined MR constitutive model
// ad is a FeaMRActDef object
// moment is a double

ad = cm.getCurrentCommittedS() // get the act/def
moment = ad.getM() // get the moment

The getCurrentCommittedS method of cm returns a FeaMRActDef object, which in turn is sent the message getM.

5.1.5 Resisting Force

Another basic premise of the system design is that the Element resisting force calculation includes the effect of all element loads and initial states. In other words, element loads and initial states only are included in the equilibrium equations through the elements. This allows the distribution of the forces to be modified according to the non-linear inelastic behavior of the Element. For example, if a hinge were to develop in a beam element during analysis, the internal distribution of element loads could be adjusted accordingly.

5.2 Constitutive Model

A Constitutive Model object defines the nature of the relationship between measures of action and deformation (such as stress and strain). These measures are defined by
Action/Deformation objects. The Material object provides data for the Constitutive Model. For example, a Constitutive Model might be one-dimensional-elastic-perfectly-plastic, the Action/Deformation object would be 1D-stress-strain, and a Material could be A36-steel. The Material object would provide the modulus of elasticity and the yield stress to the Constitutive Model object. An Element may be composed of many Constitutive Model objects. A Constitutive Model can initialize, update, commit, and report on its state at the request of an Element. It maintains the last committed state, and the increment from it to the current state. In accordance with the object design, the Constitutive Model must remain elastic during an update of its state, but may be inelastic immediately after its state is committed.

5.2.1 Material Data

The intention of the system design is that a Constitutive Model object obtain its data from a Material object. This concept works well for the typical solid modeling elements that require the Constitutive Models to communicate the Action/Deformation in terms of stress and strain. In these cases, the Constitutive Model needs only a Material object to provide the material properties. For example, the following code fragment would be appropriate as the constructor for a 2D elastic plane stress Constitutive Model. The Material object supplies all the necessary information to instantiate the class; namely Poisson's Ratio and Young's Modulus.
Fea2DElasticPlaneStress(FeaMaterial mat)
 // constructor for 2D elastic plane stress constitutive model
 // mu and e are instance variables of the class
 {
 ...

 mu = mat.poisson(); // set Poisson's Ratio
 e = mat.youngsModulus(); // set Young's Modulus
 ...

 }

For Constitutive Models with more complex measures of action and deformation, more information must be specified to the Constitutive Model. For example, a Constitutive Model that relates moment to rotation may need both the Material and the moment of inertia of the section. The Material's Young's Modulus is obtained and combined with the given moment of inertia for the section to produce the bending stiffness.

FeaMRLinearElastic(FeaMaterial mat, double i)
 // constructor for Moment Rotation linear elastic constitutive model
 // EI is an instance variable for the class
 {
 ...

 EI = mat.youngsModulus() * i; // bending stiffness
 ...

 }

5.2.2 Action/Deformation

Constitutive Models are subclassed according to their measures of action and deformation. Elements can select the abstract class for the Constitutive Model based on the desired measure of action and deformation. This allows Elements to be programmed without reference to a specific Constitutive Model. Any subclass of the abstract Constitutive Model can be used since the subclass must also use the same
measures of action and deformation. For example, a beam element with hinges may use a moment-rotation type of Constitutive Model for its hinges. This dictates that the communication between the Element and Constitutive Model will be performed by using a FeaMRActDef object. Any subclass of the FeaMRConstitutiveModel class, such as FeaMRLinearElastic or FeaMRElasticPlastic, can be used. The implication of this is that the author of a new subclass of FeaConstitutiveModel must also create a subclass of FeaActDef. For example, the FeaMRConstitutiveModel class works with the FeaMRActDef class. The interface for the FeaMRActDef is given below. The method implementations are inlined for both efficiency and to show the simplicity of the implementation.

```cpp
// interface for the FeaMRActDef class
// subclass of the FeaActDef class

class FeaMRActDef : public FeaActDef{
    // private instance variables
    double moment; // moment value
    double rotation; // rotation value

public:
    // constructor
    FeaMRActDef() { moment = rotation = 0.0; }

    // get and set the moment
    double getM() { return moment; }
    setM(double m) { moment = m; }

    // get and set the rotation
    double getR() { return rotation; }
    setR(double r) { rotation = r; }
};
```

The Constitutive Model uses its Action/Deformation class in virtually all its communication with the Element. The exception to this is for the transfer of the constitutive matrix which uses an FeaMatrix. A Constitutive Model will generally obtain the deformation measures the Element provides, and set the action measure the Element demands. For example, the following code fragment is taken from the last
lines of a request, from the element, for the current moment. A FeaMRActDef object ad is created. The value of the currentM, calculated previously by the method, is used to set the moment in ad. Finally, the action/deformation object is then returned to the Element.

```csharp
// currentM is a previously defined variable
FeaMRActDef ad  // define the MR action/deformation object
ad.setM(currentM) // set the moment to currentM
return (ad)      // return the act/def object to the element
```

Likewise, an Element specifies a change in state by providing an action/deformation object containing deformation data. In the following code fragment, the rotation is obtained by a Constitutive Model from a FeaMRActDef object ad, provided by an Element, as:

```csharp
// ad is a FeaMRActDef object
// rotation is a double
rotation = ad.getR()    // get the rotation from ad
```

5.2.3 Constitutive Model State

One of the principal functions of the Constitutive Model is the tracking of its state. An Constitutive Model is required to keep track of the current-committed state, and an increment from the current-committed state. Together they form the total state. The semantics of these state terms are the same as for Elements described previously.

The Constitutive Model presents five methods for control of its state. Namely; setIncV, setTotalV, commit, getEventFactorIncV, and getEventFactorTotalV. The trial state of a Constitutive Model is updated by an Element using either the setIncV (to specify a new increment in deformation) or
setTotalV (to specify a new total deformation) methods. In both cases the Element passes the deformation data, in the argument list for the method, as an action/deformation object. Since the Constitutive Model may experience many such trial states, the trial states must be recoverable. A commit implies that the state of the Constitutive Model is on the solution path. For a commit, the Constitutive Model sets the current-committed state to the total state, and zeros the increment in state. A Constitutive Model may be inelastic immediately after a commit.

To obtain an event factor, the Element must provide the Constitutive Model with a temporary trial state which is discarded by the Constitutive Model at the end of the event factor calculation. The state of the Constitutive Model must not be changed by an event factor calculation. The event factor is obtained by an Element using either the getEventFactorIncV (to specify a new temporary increment in deformation) or getEventFactorTotalV (to specify a new temporary total deformation) methods. In both cases the Element passes the deformation data, in the argument list for the method, as an action/deformation object.

5.3 Analysis

The responsibility of the Analysis objects (FeaAnalysis) is to collect the various properties of a Model, including the initial conditions and loading, perform the analysis, and post the appropriate response quantities to the Model. Analysis objects deal only with analysis unknowns. They have no knowledge of nodes or degrees of freedom. Thus element and nodal properties are transmitted to the Analysis objects, and results are passed back from the Analysis objects in terms of these unknowns. The Analysis
object interacts with the Map object, and generally has no direct access to the Model. An Analysis object does not process the homogeneous multi-point constraints; these are handled by the Constraint Handler. It does, however, have to consider the non-homogeneous single point displacement boundary conditions.

This section describes the facilities of the program that the Analysis objects will use to accomplish the analysis tasks; namely, the Map, the Constraint Handler, the Reorder Handler, and the Matrix Handler. Also, since the Analysis objects must take care of the boundary conditions and prescribed displacements, a description of one method for dealing with these is given, along with implementation examples.

5.3.1 Analysis Constructors

The constructor for each Analysis class creates a Constraint Handler, a Reorder Handler, a Map, and a Matrix Handler to aid in the analysis. It may also initialize the various property matrices and vectors, such as the stiffness matrix and resisting force vector. The order of creation for the handlers is important. The Constraint Handler and Reorder Handlers must be created first. Next, the Map is created using the Constraint and Reorder Handlers in the argument list. Finally, the Matrix Handler is constructed using the Map. The Matrix Handler is then used to provide initialized matrix and vector objects for the Analysis. The implementation for a typical analysis constructor is shown below.

```java
FeaTypicalAnalysis(FeaModel model)
// a typical constructor for an analysis class

// instance variables
// sub model
```
Although the actual construction of the Handler objects is trivial, the choice of subclass for each Handler dictates much about the Analysis. The FeaTransConHandler uses the transformation method to process the constraints. As such, the Analysis object needs to do nothing else with the constraints other than construct the handler. If the chosen Handler uses the method of penalty functions or Lagrangian multipliers (or some other Handler subclass), the Analysis object must perform some additional tasks during the analysis procedure. For the method of penalty functions, the Analysis must include the $C^T \alpha C$ in the stiffness matrix. The preparation of the α matrix, and the multiplication of the additional term and its inclusion in the stiffness matrix, is the responsibility of the Analysis object. For the method of Lagrangian multipliers, an additional set of analysis unknowns is added to the Map. These additional unknowns represent the Lagrangian multipliers. The Analysis object is responsible for adding the constraint matrix to the
stiffness matrix to satisfy the constraints. Some Reorder Handlers are intended for use with a specific type of constraint handler. Use with other types of Constraint Handlers may result in inefficient equation ordering schemes. Thus, care must be taken in the Reorder Handler selection. The choice of subclass used for the Matrix Handler dictates the storage scheme and solver algorithms available for the matrices it creates. This may greatly affect the performance of the Analysis.

5.3.2 Analysis State

The Analysis object uses the Map to manage the state of the Model. Through the Map, the state of the Model can be updated, committed, and reported. The components of the Model are required to keep track of the current-committed state, and an increment from the current-committed state. Together they form the total state. For an iterative solution procedure, each iteration adds to or subtracts from (updates) the increment in the state of the Model. These trial states are not part of the solution path. When the Analysis is satisfied, the state of the Model is committed. The committed state becomes part of the solution path. A commit implies that the committed state must be put into accord with the total state, and the increment in state is set to zero. A commit defines a family of possible states for the Model, and an update selects a state in the family. An event factor is the proportion of the increment in response a component of the Model can accommodate without violating the assumptions of its linearization. The state of the Model remains unchanged during an event factor calculation.

The Map provides several methods for state update. The Nodes of the Model are updated by the Map by passing a new increment in response or total response (or time
derivative), to the `updateDofGroupsByInc` and `updateDofGroupsByTotal` methods respectively. The Map's `updateElements` method updates the state of all Elements in the Model. When the Analysis is satisfied with the state, the Model can be committed. The `commit` method of Map will commit the state of all Elements and Nodes in the Model. The minimum event factor from the elements is obtained through the Map's `getMinEventFactor` method. The Map's `scaleBy` method scales the increment in response at the Nodes by a given factor, usually the value returned by the Map's `getMinEventFactor` method.

5.3.3 Assembly

The properties of the Model, such as stiffness, mass, damping, resisting force, and applied load, are obtained through the Map via `FeaAugmentedMatrix` and `FeaAugmentedVector` objects. These objects contain the basic property matrix or vector and transformations that will put the property in an analysis unknown basis. Matrix and vector objects have an `assemble` method which takes a `FeaAugmentedMatrix` or `FeaAugmentedVector` object, requests the application of the pending transformations and analysis unknown identification, and assembles the results. For example, a `FeaAugmentedMatrix` object `kel`, representing an Element stiffness matrix, can be assembled into the system stiffness matrix `k` using:

```java
// k is the model stiffness matrix (FeaMatrix)
// kel is an element stiffness matrix (FeaAugmentedMatrix)
k.assemble( kel );
```

The Map object provides the Analysis with iterators for the appropriate components of the Model that the Analysis must access directly. These are the Elements, Boundary Conditions, Loads, and Prescribed Displacements. Extending the above example, the
Analysis can assemble the stiffness for the entire Model by first obtaining the iterator for the Elements from the Map. Iterating through each Element, the Analysis then obtains the \texttt{FeaAugmentedMatrix} representing the stiffness of the Element. Each Element’s stiffness is transformed and assembled into the overall model stiffness matrix.

The implementation for this is:

```java
// m is the map object
// k is the model stiffness matrix (FeaMatrix)
// iterate thru the Elements
    elementItr = m.elementItr();   // get the element iterator
    iterateThrough (elementItr)
    {
        // get the augmented element stiffness matrix
        kel = m.getElStiff( elementItr() );

        // assemble the transformed element stiffness
        k.assemble( kel );
    }
```

5.3.4 Treatment of Boundary Conditions

Analysis objects are responsible for the inclusion of Boundary Conditions and Prescribed Displacements in the Analysis. One such method for dealing with these single point constraints is by adding a large stiffness value at the appropriate equilibrium equation, and increasing the corresponding applied load to produce the correct displacement value. This will affect the manner with which the Analysis object assembles the stiffness, applied load, and resisting force of the Model. The implementation for this is shown below.

```java
void assembleK()
// assembles the stiffness matrix k
// and adds a large spring to account for the boundary conditions
// m is the map for the model
// m and k are assumed to be instance variables for the class
{
```
// iterate thru the Elements
elementItr = m.elementItr(); // get the element iterator
iterateThrough (elementItr)
{
 // get the augmented element stiffness matrix
 kel = m.getElStiff(elementItr());

 // assemble the transformed element stiffness
 k.assemble(kel);
}

// iterate thru the boundary conditions and add a stiff spring
bcItr = m.bCItr(); // get the boundary condition iterator
iterateThrough (bcItr)
{
 // add a large spring on the diagonal of k
 k(bcItr(),bcItr()) += LARGE_SPRING;
}

void assembleLoad()
// assembles the load vector p
// and increases the loads to account for the prescribed disp
// m is the map for the model
// m and p are assumed to be instance variables for the class
{
 // assemble the loads
 loadItr = m->loadItr(lc); // get the load iterator
 for (loadItr.init(); ! loadItr; ++loadItr)
 {
 // get the augmented load vector
 ldv = m.getLoad(loadItr());

 // assemble the transformed load into p
 p.assemble(ldv);
 }

 // process prescribed displacements
 pdItr = m.presDispItr(lc); // get the prescribed disp iterator
 for (pdItr.init(); ! pdItr; pdItr++)
 {
 // get the affected equation number and value from map
 eq = m.getEqPD(pdItr());
 val = m.getValuePD(pdItr());

 // add a large force to p that will produce the disp
 p(eq) += LARGE_SPRING * val;
 }
}

void assembleLoad(double time)
// assembles the load vector p
// and increases the loads to account for the prescribed disp
// m is the map for the model
// m and p are assumed to be instance variables for the class
{
 // assemble the loads
 loadItr = m->loadItr(lc); // get the load iterator
 for (loadItr.init(); ! loadItr; ++loadItr)
 {
 // get the augmented load vector
 ldv = m.getLoad(loadItr(), time);

 // assemble the transformed load into p
 p.assemble(ldv);
 }

 // process prescribed displacements
 pdItr = m.presDispItr(lc); // get the prescribed disp iterator
 for (pdItr.init(); ! pdItr; pdItr++)
 {
 // get the affected equation number and value from map
 eq = m.getEqPD(pdItr());
 val = m.getValuePD(pdItr(), time);

 // add a large force to p that will produce the disp
 p(eq) += LARGE_SPIRING * val;
 }
}

void assembleResForce()
// assembles the resisting force vector rf
// and accounts for the reaction force at the boundary conditions
// m is the map for the model
// m and rf are assumed to be instance variables for the class
{
 // assemble the element resisting forces
 elementItr = m.elementItr(); // get the element iterator
 for (elementItr.init(); ! elementItr; elementItr++)
 {
 // get the augmented force vector
 ldv = m.getResistingForce(elementItr());

 // assemble the transformed force into rf
 rf.assemble(ldv);
 }

 // process boundary conditions
 bcItr = m.bCIter(); // get the boundary condition iterator
for (bcItr.init(); ! bcItr; bcItr++)
{
 // add the reaction force into rf
 rf(bcItr()) += LARGE_SPRING * d(bcItr());
}

5.4 Constraint Handler

The Constraint Handler is responsible for processing the homogeneous multi-point constraints and providing the Map object with an initial mapping between the model degrees of freedom and the unknowns in the Analysis object. The system would supply a variety of common handlers for constraints, such as Transformation, Penalty Function, or Lagrangian Multiplier. New handlers can be added as needed and used in new analysis methods.

This section describes the theory and behavior of an implemented Constraint Handler using the transformation method; namely the FeaTransConHandler. It is not likely that this class will be re-implemented in the future. The description provides an understanding of the behavior of the Constraint Handler.

5.4.1 Transformation Theory

The primary objective of the FeaTransConHandler is to produce a transformation matrix T, based on the equations of constraint C, that transform the degrees of freedom D to the analysis unknowns. The transformation is the initial mapping that is given to the Map object. To produce this transformation, the FeaTransConHandler object must select the degrees of freedom to be retained (D_r) and those to be condensed out (D_c).
The modeler can also specify degrees of freedom that are to be retained by the Constraint Handler. The constraint matrix and degree of freedom vector are partitioned accordingly, thus the equation of constraints is:

\[
\begin{bmatrix}
C_r & C_c
\end{bmatrix}
\begin{bmatrix}
D_r \\
D_c
\end{bmatrix}
= [0]
\]

Assuming independent constraints, there will be as many degrees of freedom condensed out as there are equations of constraint. In this case, \(C_c\) will be a square matrix. \(D_c\) must be chosen to ensure that \(C_c\) is nonsingular. Multiplying out the terms and rearranging gives:

\[
\begin{bmatrix}
D_r
\end{bmatrix}
= [C_{rc}][D_r]
\]

where

\[
[C_{rc}] = -[C_c]^{-1} [C_r]
\]

Thus the transformation matrix \(T\) is given as:

\[
\begin{bmatrix}
D_r \\
D_c
\end{bmatrix}
= [T][D_r]
\]

where

\[
[T] = \begin{bmatrix}
I \\
C_{rc}
\end{bmatrix}
\]

There is a one-to-one correspondence between the retained degrees of freedom \(D_r\) and the analysis unknowns. Therefore, \(T\) is the transformation between the complete set of
degrees of freedom and the analysis unknown. The reader is directed to Cook et al [11] for further treatment on the processing of constraints.

The equations of constraint do not refer to all the degrees of freedom in the model. Many of the degrees of freedom in C_r will not be explicitly represented in the constraints. The implicit columns of C_r associated with these degrees of freedom will be zero. Thus, the associated column of C_{rc} will also be zero.

5.4.2 Selection of Analysis Unknowns

The choice of which degrees of freedom are to be constrained out of the problem and which will become analysis unknowns may affect the rank of C_c and its ability to be inverted. Clearly none of the degrees of freedom on the list of retained degrees of freedom may be selected. But the choice of others is at the discretion of the Constraint Handler. Robinson [32] presents a "rank technique" for the automatic selection of redundants in the equilibrium equations for the flexibility method of structural analysis, which is applicable. For each row in C, a pivot is selected from a column not used previously for pivoting. The Jordan elimination procedure is used to set the pivot to unity and zero out the remainder of the column. The columns selected for the pivots define the columns of C_c, and consequently the degrees of freedom to be constrained out of the problem. Robinson suggests that the pivots can be selected as the largest absolute entry (whose column has not yet been used for pivoting) for the row either: 1) in the original C matrix before the Jordan elimination procedure has commenced; or 2) in the modified C matrix as the Jordan elimination is applied row by row. Both pivot selection methods can be foiled by pathological example, but seem to work reasonably

126
well for physically derived constraints. The former strategy was implemented. Further research in this area is warranted.

For each equation of constraint, the degree of freedom with the largest coefficient is found. If it has not already been selected, and if it is not on the list of retained degrees of freedom, it is selected for \(C_C \). Otherwise, the next largest entry that meets that criteria is chosen.

5.4.3 Data Types

In order to build the transformation matrix, the equations of constraint must be obtained from the model and stored in a convenient format to allow \(C_C \), \(C_r \), and \(C_{rc} \) to be formed. The constraint matrix will likely reference many more \texttt{FeaDofCompDesc} objects than equations of constraint. Access to the correct \texttt{FeaDofCompDesc} must be fast, so a hash table is used. A hash function \texttt{cHF} is provided for the \texttt{FeaDofCompDesc}. It folds the string representing the type and the pointer to the \texttt{FeaDofGroup} into a single integer value. Each column of the constraint matrix associated with the \texttt{FeaDofCompDesc} consists of pairs of equation numbers and the associated coefficient values. The columns will be sparse since a particular degree of freedom component will likely only be involved in a few equations of constraint. Thus, a dictionary representation is used for the columns. The C++ definition of the data type for the hash table is:

```cpp
    table< FeaDofCompDesc &, dictionary<int, double> >
```
The Constraint Handler must provide the Map object with a mapping between the degree of freedom components in the Model and the unknowns in the Analysis. The format for the mapping is defined by the Map object and is detailed in the next section. The same data type used for the constraint matrix above is used to transmit this mapping.

5.4.4 Implementation

The implementation for the FeaTransConHandler class is shown below. The interface for the class is given, followed by the implementations of the methods. Virtually all the work is performed in the constructor. That is, the constructor forms the mapping between the degrees of freedom in the Model and the initial unknowns for the Analysis. The general outline for the constructor method is:

- add all the possible dof to the map \(m \)
- get the constraint matrix \(c \) and complete list of retained dof
- iterate through the dof in the map, if dof not in \(c \), then make it an equation
- choose dof to be removed and pick the dof with the largest value on the diagonal of the resulting \(cc \) matrix
- generate a \(cc \) matrix
- generate each column of \(cr \), find \(crc \), and add to mapping

The mapping can be requested by the FeaMap object by means of the getMap method. The implementation for the hash function for the FeaDofCompDesc object is also given.

```cpp
class FeaTransConHandler : public FeaConstraintHandler{
    // mapping between dof and equations
    table<FeaDofCompDesc &, dictionary<int, double>> m;
    FeaModel* sub;  // model to be analyzed
};
```
int numEq; // number of equations

public:

// constructor
FeaTransConHandler(int nBuckets, FeaModel& sub);

// returns the mapping
table< FeaDofCompDesc &, dictionary<int, double> >& getMap();

};

FeaTransConHandler(int nBuckets, FeaModel& s) : m(nBuckets, cHF)
// constructor for the FeaTransConHandler class
{
 sub = &s;
 numEq = 0;

 // add all the possible dof to the map m

 // get the iterator for the list of nodes from the model
 // and iterate
 itr = sub.dofGroupItr();
 iterateThrough (itr)
 {
 // get the list of dof desc from the node and iterate thru it
 itr1 = itr().getDescItr();
 iterateThrough (itr1)
 {
 // loop through the components of the dof and add to m
 for (i = 0; i < itr1().nDof(); i++)
 {
 // add the component of dof to map m
 m[FeaDofCompDesc(itr1().getType(), itr(), i+1)];
 }
 }
 }

 // get the constraint matrix c and complete list of retained dof

 // set up the temporary variables c and retainedList
 table< FeaDofCompDesc &, dictionary<int, double> > c(10, cHF);
 doubleEndedList<FeaDofCompDesc&> retainedList;
 int nRow = 0;

 // get the iterator for the constraints from the model
 // and iterate through it
 itrcon = sub.constraintItr();
 iterateThrough (itrcon)
 {
 // get the iterator for the list of retained dof for this
 // constraint object and iterate through it, adding to
// the list of retained dof
iterateThrough (itrret)
{
 retainedList.addToEnd(itrret());
}

nRow++;

// get the iterator for the dictionary describing the row of
// constraints and iterate through it
itrrow = itrcon().getRowItr();
iterateThrough (itrrow)
{
 // add row into c matrix
 // key = FeaDofCompDesc
 // value = double
 c[itrrow().key()][nRow] = itrrow().value();
}

// iterate thru the dof in the map, if dof not in c then
// make it an equation
itr2 = m.getItr();
iterateThrough (itr2)
{
 if (! c.includesKey(itr2().key())) // dof not in c
 {
 numEq++;
 m[itr2().key()][numEq] = 1.0; // add to mapping
 }
}

// determine the retained dofs

// define the list of dof to be constrained out
doubleEndedList<FeaDofCompDesc&> constrainedList;

// choose dof to be removed (make sure they are not on the
// retained list) and pick the dof with the largest value
// on the diagonal of the resulting cc matrix
for (int i = 1; i < nRow+1; i++)
{
 FeaDofCompDesc* maxCol = 0;
 double maxVal = 0.0;
 // get the iterator for the constraint matrix and iterate
 // through it
 itr1 = c.getItr();
 iterateThrough (itr1)
 {
 // make sure the dof has a value in the row,
 // is not on the retained list and has not already
 // been chosen
 if (itr1().value().includesKey(i) &&

(!retainedList.includes(itr1().key())) &&
(!constrainedList.includes(itr1().key())))
{
 if (maxVal <= fabs((itr1().value())[i]))
 {
 maxVal = fabs((itr1().value())[i]);
 maxCol = &(itr1().key());
 }
}

// add the chosen dof to the list of dof to be constrained
out
constrainedList.addToEnd(*maxCol);
}

// generate a cc matrix (unsymmetric)
FeaFullMatrix cc(nRow,nRow);
int col = 1;

// get the iterator for the constrained dof list and iterate
// through it to build cc from c
itr1 = constrainedList.getItr();
iterateThrough (itr1)
{
 // loop thru the possible rows in cc
 for (int row = 1; row < nRow+1; row++)
 {
 // check if dof in c includes the row of cc
 if (c[itr1()].includesKey(row))
 // if so, add the constraint info to cc
 cc(row-1,col-1) = c[itr1()][row];
 }
 col++;
}

// decompose the cc matrix
cc.luDecomp();

// generate each column of cr, find crc, and add to mapping

// get the iterator for the constraints c and iterate
// through the dof
itr4 = c.getItr();
iterateThrough (itr4)
{
 // ignore the constrained out dof
 if (! constrainedList.includes(itr4().key()))
 {
 // fill in column of cr
 FeaFullVector cr(nRow);
 for (int i = 1; i < nRow+1; i++)
if (itr4().value().includesKey(i))
 cr(i-1) = (itr4().value())[i];

// solve for crc (store in cr)
cc.luForBack(cr);

// fill in the mapping
numEq++;
// fill in identity value for this equation number
m[itr4().key()][numEq] = 1.0;

// fill in crc values for constrained out FeaDof
int count = 0;

// get the iterator for the constrained dof and iterate
// through it
itr5 = constrainedList.getItr();
iterateThrough (itr5)
{
 m[itr5()][numEq] = -cr(count); // add to the mapping
 count++;
}

// returns the dof to equation mapping generated in the
// constructor
return m;

unsigned int cHF(FeaDofCompDesc & arg)
// hash function for the dof component
{
 // get the name of the node the dof belongs to
 char* str = arg.getGroup().getName();
 int i = strlen(str);
 int hashval = 0;

 // fold the string
 while (i > 0)
 {
 hashval += str[--i];
 }

 // return the folded value
 return hashval;
}
5.5 Map

The Map object (FeaMap) provides the principal link between the Model and the Analysis. It is a mapping between the degrees of freedom in the Model and the unknowns in the Analysis. All communication with the Analysis is in terms of analysis unknowns, and all communication with the Model and its sub-components is in terms of degrees of freedom. Although the FeaMap object manages this mapping, it does not create the information. The mapping is created by the Constraint Handler and renumbered by the Reordering Handler. At the direction of the Analysis object, Map obtains the structural property matrices and vectors from the components of the Model, transforms them as needed to analysis unknowns, and passes them to Analysis. Map also receives the result vectors from Analysis and distributes them to the Nodes.

This section describes the theory and behavior of the implemented FeaMap. It is not likely that this class will be re-implemented in the future. The description is provided to give a more thorough understanding of the system architecture.

5.5.1 Example

The Map object is fairly complicated. The best introduction to its function is by example. The sample structure shown in Figure 5.5.1a will be used for this purpose. The example is used to show how model properties, in this case an element stiffness matrix, are transformed by the Map and given to the Analysis, and how the Map distributes the results of the Analysis to the Model. These two types of operations are
the principal operations of the Map. The other methods of the Map deal with providing the Analysis with access to the collections of objects in the Model. These methods are relatively straightforward and are not shown here. Following the example is the implementation of the FeaMap class.

Figure 5.5.1a Sample Problem

The mapping (transformation) between the degrees of freedom (shown by means of the coordinate systems at the nodes) and the three unknowns in the analysis (symbolically represented as dotted lines) is determined by the Constraint Handler, and stored by the Map object. The mapping for the sample problem is shown in Table 5.5.1a. The mapping consists of the FeaDofCompDesc objects indicating the degree of freedom component in the Model, and a list of pairs of analysis unknowns and transformation values. For the sample problem, the maximum length of the list is shown as 2. Obviously this length will vary from model to model. Nodes A and D have been constrained out (i.e. no analysis unknown is assigned to them) and Node B is slaved to Node C. These values give the complete transformation between the Model degrees of freedom and the Analysis unknowns.
Table 5.5.1a Mapping of Degrees of Freedom to Analysis Unknowns

<table>
<thead>
<tr>
<th>Node</th>
<th>DoF Type</th>
<th>Axis</th>
<th>Unknown</th>
<th>Factor</th>
<th>Unknown</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>translation</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>translation</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>rotation</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>translation</td>
<td>1</td>
<td>1</td>
<td>1.0</td>
<td>3</td>
<td>-5.0</td>
</tr>
<tr>
<td>B</td>
<td>translation</td>
<td>2</td>
<td>2</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>rotation</td>
<td>1</td>
<td>3</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>translation</td>
<td>1</td>
<td>1</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>translation</td>
<td>2</td>
<td>2</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>rotation</td>
<td>1</td>
<td>3</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>translation</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>translation</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>rotation</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5.5.1.1 Transformation of a Stiffness Matrix

To demonstrate the use of this mapping, consider the case of the transformation of the stiffness matrix for Element A. Element A will internally produce its stiffness matrix k_e according to the elemental system. It also generates a transformation matrix T_{e-l} that will transform the matrix to be in terms of local coordinate systems at the Nodes. The Map defines a transformation matrix T_{l-n} to put the matrix in terms of the actual nodal coordinate systems that describe the degrees of freedom, and an additional transformation matrix T_{n-a} to put the matrix in terms of the analysis unknowns. Algebraically, this process of producing K_{ea}, an element stiffness matrix in terms of analysis unknowns, is represented as:

$$K_{ea} = T_{n-a}^T T_{l-n}^T T_{e-l}^T k_e T_{e-l} T_{l-n} T_{n-a}$$
For this example, k_e is a 3 by 3 symmetric matrix, and $T_{e,i}$ is a block matrix with a single row block and four column blocks corresponding to the local coordinate systems as shown in Figure 5.5.1.1a.

$$T_{e,i} = \begin{bmatrix} [3x2] & [3x1] & [3x2] & [3x1] \\ C_q & C_a & C_q & C_q \end{bmatrix}$$

Figure 5.5.1.1a Local Element Coordinate Systems and Transformation

The Map object queries the augmented matrix to determine these local coordinate systems. To transform the matrix into the nodal coordinate systems that define the degrees of freedom, the Map produces $T_{i,n}$, which is a 4 by 4 block matrix. Only the diagonal blocks contain transformations. These transformations are obtained from the comparison between the local coordinate systems at the Nodes defined by the Elements, and the coordinate systems defined at the Nodes. The coordinate system objects themselves actually produce the transformation blocks. The size of the blocks is determined by the number of axes of the coordinate systems. In this example, the coordinate systems from the Element and at the Node have the same number of axes, resulting in square blocks. The coordinate systems at the nodes and the transformation matrix the Map adds for the local to nodal transformation are shown in Figure 5.5.1.1b.
Finally, the Map must add a transformation T_{n-a} to put the matrix into analysis unknowns. The values for this transformation are obtained from the degree-of-freedom-to-analysis-unknown mapping shown previously in Table 5.5.1a. The Map first creates a list of all the analysis unknowns affected by the augmented matrix. These analysis unknowns are mapped to the reordered analysis unknowns, and become the labels for the columns of T_{n-a}. The rows of T_{n-a} are blocked according to the columns of T_{l-n}. In this case, T_{n-a} has four row blocks and one column block as shown:

$$
T_{n-a} = \begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & -5.0 \\
0 & 0 & 1
\end{bmatrix}
$$

unknown #1 #2 #3
When all of the transformations are applied, the resulting stiffness matrix will be a 3x3 matrix that refers to analysis unknowns 1, 2, and 3. A similar procedure is employed by the Map to transform the mass, and damping matrices, and the resisting force and applied load vectors.

5.5.1.2 Processing of Responses

The Map receives the response arrays (e.g. displacements, velocities, accelerations, etc.) from the Analysis, and must distribute them to the Nodes. The arrays are in terms of Analysis unknowns. The Map must transform these into a degree of freedom basis. For each degree of freedom in the Model, the Map obtains the associated analysis unknown results and transforms them using its internal degree-of-freedom-to-unknown-number mapping scheme. Referring to Table 5.5.1a of the previous example, the Map may be given a displacement array, \(d \), by the Analysis, for distribution to the Nodes. The Map then processes each degree of freedom at each node and calculates the effect of \(d \) on the degree of freedom. For Node A, there is no effect, as both the translation and rotation degree of freedom have no associated analysis unknown. The next degree of freedom the Map encounters is the translation degree of freedom for Node B. The 1-axis component corresponds to the response value of unknown number 1 \((d_1)\), multiplied by a transformation factor of 1.0. The 2-axis component is then calculated as \(1.0d_2 - 5.0d_3\). The axis components are grouped into vectors using the coordinate system at the Nodes. The resulting vector describes the effect of \(d \) on translation degree of freedom of Node B. It is then used to update the Node. Likewise, the remaining degrees of freedom for the Model are processed.
5.5.2 Implementation

The implementation of these sample operations, namely the transformation of an
element stiffness matrix using the Map's `getElStiff` method and the distribution of
analysis results to the Model using the Map's `updateDofGroupsByTotal` method,
is now presented. The Map contains two internal methods that aid in the
transformations. One method is declared to be private:

```c
FeaTransformation* nodalToEqNum(FeaTransformation*);
```

This method is used internally to transform a `FeaTransformation` instance from nodal
coordinates to analysis unknowns. The `FeaTransformation` class is used by the
augmented vector and matrix classes to describe the coordinate system in which a
degree of freedom is defined. The method is private since it relies on the internal
mapping between Model degrees of freedom and analysis unknowns. A similar
method:

```c
FeaTransformation* localToNodal(FeaTransformation*);
```

is used by Map to transform a `FeaTransformation` instance from local (to an Element)
coordinates to nodal coordinates. This is implemented as a function (not a part of the
`FeaMap` class) since it does not make use of any private portion of the `FeaMap` class.

The relevant portion of the instance variables the Map uses to perform the two
operations given in the implementation are:

```c
// number of eq
int nEq;

// structure to be analyzed
FeaModel* sub;
```
The variables are instantiated in the constructor for the class. The initial degree-of-freedom-to-unknown-number mapping \(m \) is obtained from the Constraint Handler. The reordered unknown numbering \(\texttt{newOrder} \) is obtained from the Reorder Handler. Both handlers are specified by the Analysis.

The implementation for the \texttt{getElStiff}, \texttt{updateDofGroupsByTotal}, \texttt{nodalToEqNum} and \texttt{localToNodal} methods is:

\begin{verbatim}
FeaAugmentedMatrix& getElStiff(FeaElement& el)
// obtains the stiffness from the given element and adds // transformations to put it in terms of analysis equation numbers
{
 // get stiffness from element in local coords
 FeaAugmentedMatrix kel = el.getStiff();

 // transform from local to nodal coords
 FeaTransformation tr = kel.getLastT();

 // get the transformation from local to nodal
 FeaTransformation trnew = localToNodal(tr);

 // add new transformation to the FeaAugmentedMatrix
 kel.addT(trnew);

 // now transform to equation numbers
 // get the last transformation
 tr = kel.getLastT();

 // get the transformation from nodal to equation numbers
 FeaTransformation trnew2 = nodalToEqNum(tr);

 // add new transformation to the FeaAugmentedMatrix
 kel.addT(trnew2);

 // return the revised FeaAugmentedMatrix (in equation numbers)
 return (kel);
}
\end{verbatim}
void updateDofGroupsByTotal(FeaFullVector& disp)
// takes the given array of total displacements in terms of
// equation numbers and uses it to update the nodes
{
 // get the iterator for the dofGroups from the model and
 // iterate through it
 itr = sub.dofGroupItr();
 iterateThrough (itr)
 {
 // get the iterator for the dof descriptions from the node
 // and iterate thru it
 itr1 = itr().getDescItr();
 iterateThrough (itr1)
 {
 // set up an array to hold the ordinates
 val = FeaFullVector(itr1().nDof());

 // loop through the components of the dof and build up
 the
 // ordinates of the displacement in val, one by one
 for (int i = 0; i < itr1().nDof(); i++)
 {
 // get the iterator for the dictionary of
 transformation
 // values associated with this dof component in
 // the mapping
 desc = FeaDofCompDesc(itr1().getType(), itr(), i+1);
 itr2 = (m[desc]).getItr();
 iterateThrough (itr2)
 {
 // get the displacement for the equation
 d = disp(newOrder[itr2().key()] - 1);

 // transform and add to the ordinate
 val(i) += itr2().value() * d;
 }
 }

 // get the coordinate system for the dof
 dofCoord = itr1().getCoOrdSys();

 // create a vector from the ordinates
 vec = FeaGeoVector(val, dofCoord);

 // update the node with the vector
 itr().totalDof(itr1().getType(), vec);
 }
 }
}

FeaTransformation* localToNodal(FeaTransformation* tr)
// given a transformation object that describes the local
cordinate
// systems, it returns a transformation object in terms of nodal
// coordinate systems
{
 // determine the number of column blocks for the
 // transformation
 // from local to nodal, and set as the current number of
 // row blocks
 int nRowBlocks = tr.nColBlock();

 // initialize the number of column blocks
 int nColBlocks = 0;
 int ncol = 0;

 // determine the number of column blocks

 // get the iterator for the transformation descriptions from
 the
 // transformation object and iterate through it
 itr1 = tr.getDescItr();
 iterateThrough (itr1)
 {
 // get the group and type from the transformation
 description
 gr = itr1().getGroup();
 ty = itr1().getType();

 // loop thru the desc at the node to find the right one
 itr2 = gr.getDescItr();
 iterateThrough (itr2)
 {
 // check if the type at the node and trans agree
 if (ty == itr2().getType())
 {
 // if so add to the number of column blocks
 nColBlocks++;
 break;
 }
 }
 }

 // build transformation to nodal coords

 // declare the new transformation
 trnew = new FeaTransformation(nRowBlocks, nColBlocks);

 // get the iterator for the transformation descriptions from
 the
 // transformation object and iterate through it
 itr3 = tr.getDescItr();
iterateThrough (itr3)
{
 // get the group and type from the transformation description
 gr = itr3().getGroup();
 ty = itr3().getType();

 // loop thru the desc at the node to find the right one
 itr4 = gr.getDescItr();
 iterateThrough (itr4)
 {
 if (ty == itr4().getType())
 {
 // get the transformation from global from old
 // transformation description
 oldcT = itr3().getCoOrdSys().trans_from_global();

 // get the transformation to global from the node
 newcT = itr4().getCoOrdSys().trans_to_global();

 // form the new transformation description
 desc = FeaTransDesc(itr4().getType(),
 gr, itr4().getCoOrdSys());

 // add the description and transformation matrix to
 // local to nodal transformation object
 trnew.addDescLocalToNodal(desc, oldcT * newcT);
 break;
 }
 }
}

// return the local to nodal transformation object
return trnew;

FeaTransformation* nodalToEqNum(FeaTransformation* tr)
// given a transformation object that describes the nodal coordinate
// systems, it returns a transformation object in terms of analysis
// equation numbers
{
 // build list of eq num affected by the element
 declare the list of equation numbers
 doubleEndedList<int> eqNum;

 // determine the number of column blocks for the transformation
 // from nodal to local, and set as the current number of
// row blocks
int nRowBlocks = tr.nColBlock();

// initialize the total number of columns in the transformation
int ncol = 0;

// get the iterator for the transformation descriptions from the
// transformation object and iterate through it
itr5 = tr.getDescItr();
iterateThrough (itr5)
{
 // get the group and type from the transformation
description
 gr = itr5().getGroup();
 ty = itr5().getType();

 // loop over the dof comp to determine the affected eq num
 for (int i = 0; i < itr5().nDof(); i++)
 {
 // build FeaDofCompDesc for this dof
 FeaDofCompDesc ccd(ty, gr, i+1);

 // iterate thru the dictionary of eq num from FeaMap
 itr6 = (m[ccd]).getItr();
 iterateThrough (itr6)
 {
 // get the affected equation number
 int key = itr6().key();

 // check if it is already on the list
 if (! eqNum.includes(key))
 {
 // if not, add it and increase the number of
 // columns
 eqNum.addToEnd(key);
 ncol++;
 }
 }
 }
}

// set up new FeaTransformation matrix
trnew2 = new FeaTransformation(nRowBlocks, 1);

// set up the equation number array in the transformation
int* eqNumArray = new int[ncol];
int itmp = 0;

// get the iterator for the list of eq num and iterate through it
itr7 = eqNum.getItr();
iterateThrough (itr7)
{
 eqNumArray[itmp] = itr7()-1; // place the eq num
 itmp++;
}

// put the eq num into the transformation object
trnew2.setEqNumbers(eqNumArray);

// set the transformation matrix

// get the iterator for the transformation descriptions from the
// transformation object and iterate through it
itr8 = tr.getDescItr();
iterateThrough (itr8)
{
 // get the group and type from the transformation description
 gr = itr8().getGroup();
 ty = itr8().getType();

 // declare the transformation matrix
tnew = new FeaFullMatrix(itr8().nDof(),ncol);
 int currentRow = -1;

 // loop over the dof to determine the affected eq num
 for (int i = 0; i < itr8().nDof(); i++)
 {
 currentRow++;
 absoluteRow++;
 int currentCol = -1;

 // build dof component description
 FeaDofCompDesc ccd(ty, gr, i+1);

 // iterate thru the list of eq num
 itr9 = eqNum.getItr();
 iterateThrough (itr9)
 {
 currentCol++;
 // check if the row of m contains the eq num
 if (m[ccd].includesKey(itr9()))
 {
 // if so, add the transformation value to tnew
 tnew(currentRow, currentCol) = m[ccd][itr9()];
 }
 }
 }

 // put the transformation matrix into the transformation object
trnew2.putT(tnew, absoluteRow - currentRow, 0);
}

// return the new transformation object
return trnew2;
}
6. Extensions and Examples

This chapter contains extensions to the basic finite element analysis system, described in the previous chapters, and examples that demonstrate the use of the system. The purpose of these extensions is to demonstrate that the design is both feasible and extensible. The examples show applications of the system for structural analysis.

One of the stated goals of the new finite element software architecture is extensibility. This chapter demonstrates how one can extend the program. Typically, finite element programs are extended to include new element types and new solution algorithms. Examples of these common extensions include: a two-dimensional beam element with hinges at the ends; a type of substructuring using the element interface; and several analysis types including a nonlinear dynamic solution scheme using Newton-Raphson iteration.
The implementations of the classes is shown in a simplified C++ code as defined in Chapter 3. The code is C++ with the memory management, pointers, references, and some data typing information removed for clarity.

Also included in this chapter is a description of the process involved in building a model using the constructors for its component classes. The final section demonstrates the use of the analysis classes to advance and output the state of a model.

6.1 Examples of Analysis

The description of the design of the Analysis object outlines the general features of an Analysis object. This section presents the design of specific analysis types: Linear Static; Nonlinear Static Event to Event; Nonlinear Static with Newton-Raphson Iteration; and Nonlinear Dynamic with Newton-Raphson Iteration analyses. This list is not exhaustive, nor does it represent the optimal design of these types of analyses. Rather, it is presented here to demonstrate the features of the entire object design, and how general Analysis objects are added.

Each sample Analysis class presented in this section has private methods that assemble the stiffness, mass, damping, load, and resisting force. These methods are described in Chapter 5. The methods account for the Boundary Conditions and Prescribed Displacements using the method of penalty functions. Each class also presents public methods for the construction of the object, initialization of the analysis, and to invoke the actual analysis. The C++ interface for the class and the implementation for these public methods is presented in each section.

148
6.1.1 Linear Static Analysis

The FeaLinearStaticAnalysis provides a linear static analysis of a Model. The Linear Static Analysis is the simplest of the sample analyses. For a given Load Case, the analysis forms the stiffness matrix; forms the load and resisting force vectors; solves for displacements; and posts the results to the Model.

The C++ interface for the FeaLinearStaticAnalysis class is given below.

```cpp
class FeaLinearStaticAnalysis{
   // private data
   FeaModel* sub; // model to be analyzed
   char* lc; // load case
   FeaConstraintHandler* conH; // constraint handler
   FeaReorderHandler* reoH; // reorder handler
   FeaMatrixHandler* matH; // matrix handler
   FeaMap* m; // map
   FeaMatrix* k; // stiffness matrix
   FeaVector* d; // displacement vector
   FeaVector* p; // load vector
   FeaVector* rf; // resisting force vector

   // private methods
   void assembleK(); // assembl. stiffness
   void assembleTotalLoad(); // assembl. total load
   void assembleTotalLoad(double time); // assembl. total load
   void assembleResForce(); // assembl. resisting force

   public:
   // constructor
   FeaLinearStaticAnalysis(FeaModel& model);

   // initialization of the analysis
   void init(char* loadCase);

   // analysis for the given load case
   void analyze();
};
```
The constructor for the FeaLinearStaticAnalysis class creates a Constraint Handler, a Reorder Handler, a Map, and a Matrix Handler to aid in the analysis. It also initializes the stiffness matrix and the vectors that hold the load, resisting force, and displacement. A column compacted matrix is used to hold the structural stiffness. The implementation for the constructor is:

```cpp
FeaLinearStaticAnalysis(FeaModel model)
// constructs an instance of the Linear Static Analysis Class
{
    sub = model;

    // create the constraint handler (transformation method)
    conH = new FeaTransConHandler(sub);

    // create the reordering handler (no reordering)
    reoH = new FeaNoOrderHandler(sub);

    // create the FeaMap
    m = new FeaMap(sub, conH, reoH);

    // create the matrix handler (column compacted)
    matH = new FeaColCompMatrixHandler(m);

    // form the instance variables
    k = matH.setupMatrix();
    d = matH.setupVector();
    p = matH.setupVector();
    rf = matH.setupVector();
}
```

The implementation for the initialization (init) method is:

```cpp
init(char* loadCase)
// initializes the analysis
{
    lc = loadCase;
    m.initializeElSt(lc); // initializes the element states
    assembleK(); // assembles the stiffness matrix (k)
    k.luDecomp(); // decomposes the stiffness matrix
}
The implementation for the `analyze` method is:

```cpp
analyze()
// analyzes for the given load case
{
 assembleTotalLoad(); // assembles the total load (p)
 assembleResForce(); // assembles resisting force (rf)
 unbal = p - rf; // gets the unbalanced load
 k.luForBack(unbal); // solves for the displacements
 d = unbal; // puts displacements in d
 m.updateDofGroupsByTotal(d); // updates nodes with d
 m.commit(); // commits the nodes and elements
}
```

The assembly of the resisting forces must be performed since the element loads are included in the element resisting force calculation. The increment in displacements is determined using the forward and backward substitution methods of the stiffness matrix (which was previously decomposed by `init`). The total displacement vector is updated and used by the Map to update the Nodes. Finally, the Map is instructed to commit the state of the Elements and Nodes.

### 6.1.2 Nonlinear Static Event to Event Analysis

The `FeaEventToEventStaticAnalysis` provides a nonlinear event-to-event static analysis of a Model. The event-to-event scheme consists of seeking equilibrium of the model, with respect to the applied loading, by advancing the solution through many linear segments.

The C++ interface for the `FeaEventToEventStaticAnalysis` class is shown below. The `goToNextEvent` method is provided to allow for external event-to-event control of the analysis.
class FeaEventToEventStaticAnalysis{
    // private data
    FeaModel* sub; // model to be analyzed
    char* lc; // load case
    FeaConstraintHandler* conH; // constraint handler
    FeaReorderHandler* reoH; // reorder handler
    FeaMatrixHandler* matH; // matrix handler
    FeaMap* m; // map
    FeaMatrix* k; // stiffness matrix
    FeaVector* unbal; // unbalanced load vector
    FeaVector* rf; // resisting load vector
    FeaVector* d; // current displacement vector
    FeaVector* p; // load vector

    // private methods
    void assembleK(); // assemble stiffness
    void assembleTotalLoad(); // assemble total load
    void assembleTotalLoad(double time); // assemble total load
    void assembleResForce(); // assemble resisting force

public:
    // constructor
    FeaEventToEventStaticAnalysis(FeaModel& model);

    // advance state of analysis to the next event
    void goToNextEvent();

    // initialization of the analysis
    void init(char* loadCase);

    // analysis for the given load case
    void analyze(double loadStepFactor);
};

The implementation of the constructor is:

FeaEventToEventStaticAnalysis(FeaModel& model)
    // constructs an instance of the Event-to-event Static Analysis Class
{
    sub = model;

    // create the FeaConstraint handler
    conH = new FeaTransConHandler(sub);

    // create the reordering handler
    reoH = new FeaNoOrderHandler(sub);

    // create the map
m = new FeaMap(sub, conH, reoH);

    // create the matrix handler
    matH = new FeaColCompMatrixHandler(m);

    // form the instance variables
    k = matH.setupMatrix();
    unbal = matH.setupVector();
    rf = matH.setupVector();
    d = matH.setupVector();
    p = matH.setupVector();
    }

The implementation for the initialization (init) method is:

void init(char* loadCase)
// initializes the analysis
{
    lc = loadCase;
    m.initializeElSt(lc); // initializes the element states
}

The analyze method uses a load step factor to incrementally advance the analysis through a load history. The implementation for the analyze method is:

void analyze(double loadStepFactor = 0.0)
// analyzes for the given load case, and load step factor
{
    assembleTotalLoad(loadStepFactor); // assemble p
    assembleResForce(); // assemble rf
    unbal = p - rf; // get the unbalanced load
    while (unbal.norm2() > UNBAL_TOL) // check for unbalance
        goToNextEvent(); // proceed to next event
}

The total applied load and element resisting forces are formed to produce the unbalanced load. The assembly of the resisting forces is necessary as the element loads are included in the element resisting force calculation. Once the unbalanced load is
formed, a loop is set up to proceed through each event until the unbalanced load is removed.

The `goToNextEvent` method is used by the `analyze` method to advance the state of the analysis to the next event. The implementation is shown below.

```c
void goToNextEvent()
// advances the state of the analysis to the next event
{
 assembleK(); // assemble stiffness (k)
 k.luDecomp(); // decompose k
 k.luForBack(unbal); // solve for disp inc (unbal)
 m.updateDofGroupsByInc(unbal); // update nodes with disp inc
 factor = m.getEventFactor() // get event factor from map
 if (factor < 1.0)
 m.scaleBy(factor); // scale disp inc at the nodes
 m.commit(); // commit nodes and elements
 d = d + (unbal * factor); // add disp inc to total disp
 assembleResForce(); // assem. the resisting force
 unbal = p - rf; // get the new unbalanced load
}
```

The `goToNextEvent` method assembles the stiffness matrix and solves for the corresponding displacement increment. These displacements are used by the Map to update the Nodes of the Model. The Map is then instructed to query the Elements and return the smallest event factor. The event factor represents the proportion of the increment in displacement the Elements can accommodate without invalidating the current linearization by more than a specified tolerance. The Map is then instructed to scale the increment of displacement at the Nodes by this minimum event factor, and commit the state of the Nodes and Elements. The total displacement vector is then updated, and the current resisting forces and unbalanced load are generated.
6.1.3 Nonlinear Static Analysis with Newton-Raphson Iteration

The nonlinear static analysis with Newton-Raphson iteration performs its analysis by using the current linearization to determine the displacements for the unbalanced load; updating the state of the Model and obtaining the new unbalanced load; reforming the tangent stiffness; and repeating until the Model is in equilibrium with the loading. During this iteration process, the model is updated through many trial states until the state on the solution path is found. Only this final state is committed.

The C++ interface for the FeaNRStaticAnalysis class is shown below.

```cpp
class FeaNRStaticAnalysis{
 // private data
 FeaModel* sub; // model to be analyzed
 char* lc; // load case
 FeaConstraintHandler* conH; // constraint handler
 FeaReorderHandler* reoH; // reorder handler
 FeaMatrixHandler* matH; // matrix handler
 FeaMap* m; // map
 FeaMatrix* k; // stiffness matrix
 FeaVector* unbal; // unbalanced load vector
 FeaVector* rf; // resisting load vector
 FeaVector* d; // current displacement vector
 FeaVector* p; // load vector

 // private methods
 void assembleK(); // assemble stiffness
 void assembleTotalLoad(); // assemble total load
 void assembleTotalLoad(double time); // assemble total load
 void assembleResForce(); // assemble resisting force

public:
 // constructor
 FeaNRStaticAnalysis(FeaModel& model);

 // initialization of the analysis
 void init(char* loadCase);

 // analysis for the given load case
 void analyze(double loadStepFactor);
};
```
The implementation for the constructor is:

```cpp
FeaNRStaticAnalysis(FeaModel& model)
// constructs an instance of the Newton-Raphson Static
// Analysis Class
{
 sub = model;

 // create the FeaConstraint handler
 conH = new FeaTransConHandler(sub);

 // create the reordering handler
 reoH = new FeaNoOrderHandler(sub);

 // create the map
 m = new FeaMap(sub, conH, reoH);

 // create the matrix handler
 matH = new FeaColCompMatrixHandler(m);

 // form the instance variables
 k = matH.setupMatrix();
 unbal = matH.setupVector();
 rf = matH.setupVector();
 d = matH.setupVector();
 p = matH.setupVector();
}
```

The implementation for the initialization (init) method is:

```cpp
void init(char* loadCase)
// initializes the analysis
{
 lc = loadCase;
 m.initializeElSt(lc); // initializes the element states
}
```

The analyze method uses a load step factor to incrementally advance the analysis through a load history. The implementation for the analyze method is:

```cpp
void analyze(double loadStepFactor)
```
// analyzes for the given load case, and time value
{
    assembleTotalLoad(loadStepFactor); // assemble p
    assembleResForce(); // assemble rf
    unbal = p - rf; // get the unbalanced load
    while (unbal.norm2() > UNBAL_TOL) // check for unbalance
    {
        assembleK(); // assemble stiffness (k)
        k.luDecomp(); // decompose k
        k.luForBack(unbal); // solve for disp inc (unbal)
        m.updateDofGroupsByInc(unbal); // update nodes with disp inc
        m.updateElements(); // update the element states
        d = d + (unbal * factor); // add disp inc to total disp
        assembleResForce(); // assem. the resisting force
        unbal = p - rf; // get the new unbalanced load
    }
    m.commit(); // commit nodes and elements
}

The total applied load and element resisting forces are formed to produce the unbalanced load. The assembly of the resisting forces is necessary as the element loads are included in the element resisting force calculation. The norm of the unbalance load is then tested against a small tolerance to check if equilibrium has been obtained. If not, the displacements for the unbalanced load are obtained. This displacement increment is added to the Nodes by the Map object by invoking the Map's updateDofGroupsByInc method with the displacement increment as the method's argument. The state of the Elements is then updated by using the updateElements method contained in the Map class. The resisting force and unbalanced load are then calculated. The equilibrium state is committed once convergence is achieved.

6.1.4 Nonlinear Dynamic Analysis with Newton-Raphson Iteration

One of the more complex types of analysis to implement in a finite element program is a nonlinear dynamic analysis with Newton-Raphson iteration. This analysis involves
forming the system properties of stiffness, mass, damping, and time varying load for each time step; using an integration scheme to reduce the problem to a static case; solving for the displacements, velocities, and accelerations by Newton-Raphson iteration within the time step; and advancing the solution to the end of the step.

The Average Acceleration Method is used for this analysis class. The reader is directed to the standard texts, Clough and Penzien [10] and Humar [21], for a complete description of the formulation. The incremental form of the dynamic equation of equilibrium is reduced to:

\[ \mathbf{K}_t^* \Delta \mathbf{u} = \Delta \mathbf{p}^* \]

where

\[ \mathbf{K}_t^* = \frac{4}{h^2} \mathbf{M} + \frac{2}{h} \mathbf{C} + \mathbf{K}_r \]

\[ \Delta \mathbf{p}^* = \Delta \mathbf{p} + \mathbf{M} \left( \frac{4}{h} \mathbf{u}_n + 2 \mathbf{\ddot{u}}_n \right) + 2 \mathbf{C} \mathbf{\ddot{u}}_n \]

The variables are: the change in displacement, \( \Delta \mathbf{u} \); time interval, \( h \); tangent stiffness, \( \mathbf{K}_t \); mass, \( \mathbf{M} \); damping, \( \mathbf{C} \); change in load \( \Delta \mathbf{p} \); velocity, \( \mathbf{\dot{u}}_n \); and acceleration, \( \mathbf{\ddot{u}}_n \).

The subscript \( n \) indicates the start of the current time step under consideration. Once the change in displacement is found, the displacements, \( \mathbf{u}_{n+1} \), and velocities, \( \mathbf{\dot{u}}_{n+1} \), of the system at the end of the interval are found from:

\[ \mathbf{u}_{n+1} = \mathbf{u}_n + \Delta \mathbf{u} \]

\[ \mathbf{\dot{u}}_{n+1} = \frac{2}{h} \Delta \mathbf{u} - \mathbf{\dot{u}}_n \]
The acceleration, $\ddot{u}_{n+1}$, at the end of the interval is found by enforcing equilibrium at the end of the time step. Thus, the acceleration is related to the total applied load, $p_{n+1}$, resisting force from the elements, $f_{s,n+1}$, and damping force, as:

$$\ddot{u}_{n+1} = M^{-1}(p_{n+1} - f_{s,n+1} - C\dot{u}_{n+1})$$

Many alternative techniques have been developed to enforce equilibrium, but these are beyond the scope of this work.

It is assumed that the mass and damping of the system is constant, but the tangent stiffness may vary. Thus, within a time step, Newton-Raphson iteration is used to converge upon the correct displacement at the end of the time step. The procedure is given as:

$$\Delta r^{(l)} = \Delta p^*$$

while $|\Delta r^{(k)}| < \text{tolerance}$

$$\Delta u^{(k)} = K_T^{-1} \Delta r^{(k)}$$

$$u^{(k)}_{n+1} = u^{(k-1)}_{n+1} + \Delta u^{(k)}$$

$$\Delta f^{(k)} = f^{(k)}_{s,n+1} - f^{(k-1)}_{s,n+1} + \left(\frac{6M}{h^2} + \frac{3C}{h}\right) \Delta u^{(k)}$$

$$\Delta r^{(k+1)} = \Delta r^{(k)} - \Delta f^{(k)}$$

Using this theory, a dynamic analysis with Newton-Raphson iteration was implemented in the finite element system as the FeaNRDynamicAnalysis class. The C++ interface for the FeaNRDynamicAnalysis class is:
class FeaNRDynamicAnalysis{
    // private data
    FeaModel* sub; // model to be analyzed
    char* lc; // load case
    FeaConstraintHandler* conH; // constraint handler
    FeaReorderHandler* reoH; // reorder handler
    FeaMatrixHandler* matH; // matrix handler
    FeaMap* m; // map
double lastTime; // previous time value
    FeaMatrix* k; // stiffness matrix
    FeaMatrix* mass; // mass matrix
    FeaMatrix* mInv; // decomposed mass matrix
    FeaMatrix* damp; // damping matrix
    FeaVector* p; // load vector
    FeaVector* d; // displacement vector
    FeaVector* v; // velocity vector
    FeaVector* a; // acceleration vector
    FeaVector* rf; // resisting force vector
double betaK; // stiffness based damping factor
double betaM; // mass based damping factor

    // private methods
    void assembleK(); // assembl. stiffness
    void assembleMass(); // assembl. mass
    void assembleDamp(); // assembl. damping
    void assembleTotalLoad(); // assembl. total load
    void assembleTotalLoad(double time); // assembl. total load
    void assembleResForce(); // assembl. resisting force

public:
    // constructor
    FeaNRDynamicAnalysis(FeaModel& model, double bk, double bm);

    // initializes the analysis
    void init(char* loadCase);

    // performs the analysis
    void analyze(double time);
};

The implementation for the constructor is:

FeaNRDynamicAnalysis(FeaModel& model, double bk, double bm)
// constructs an instance of Newton Raphson Dynamic Analysis
{
    sub = model;
betaK = bk;
betaM = bm;
lastTime = 0.0;

// create the FeaConstraint handler
conH = new FeaTransConHandler(sub);

// create the reordering handler
reoH = new FeaNoOrderHandler(*sub);

// create the map
m = new FeaMap(sub, conH, reoH);

// create the matrix handler
matH = new FeaFullMatrixHandler(m);

// construct the instance variables
k = matH.setupMatrix();
mass = matH.setupMatrix();
mInv = matH.setupMatrix();
damp = matH.setupMatrix();
p = matH.setupVector();
d = matH.setupVector();
v = matH.setupVector();
a = matH.setupVector();
rf = matH.setupVector();
}

The analysis procedure is broken up into two methods. One to initialize the analysis (init), and one to perform the analysis (analyze). The init method saves the load case name; assembles the stiffness, mass, and damping matrices; directs the map to initialize the element states; and creates the inverse of the mass matrix for later use. The implementation for the init method is:

```c
void init(char* loadCase)
// initialize the analysis
{
 lc = loadCase;

 // assemble the stiffness, mass, and damping
 assembleK();
 assembleMass();
 assembleDamp();

 // initialize the element states
 m.initializeElSt(lc);
```
The `analyze` method advances the state of the analysis, and the Model, to the given time value. The implementation closely follows the equations given previously.

```cpp
analyze(double time)
// evaluates one time step ending in the given time
{
 h = time-lastTime // calculate the current time step h
 pOld = p // save applied loads from last step
 assembleLoad(time) // assemble loads into p for this step

 // calculate change in rhs of equilibrium equation
 deltaR = p - pOld + ((4.0/h)*v + 2.0*a)*M + 2.0*v*C

 // calculate invariant portion of change in velocity
 deltaV = - 2.0*v

 // calc mc for use inside the loop
 mc = (4.0/h/h)*M + (2.0/h)*C;

 // loop until unbalanced force (deltaR) is small
 while (deltaR.norm() < TOLERANCE)
 {
 deltaROld = deltaR // save deltaR
 assembleK() // assemble stiffness
 Kstar = K + mc // calculate modified k
 Kstar.luDecomp() // decompose modified k
 Kstar.luForBack(deltaR) // solve for inc in disp
 d = d + deltaR // update displacements
 deltaV = deltaV + (2.0/h) * deltaR // calc deltaV
 m.updateDofGroupsByTotal(d) // update nodes
 m.updateElements() // update elements
 rfOld = rf // save old resis. force
 assembleResForce() // assem. resis. force
 deltaR = deltaROld - (rf - rfOld + mc*deltaR)
 }

 v = v + deltaV // calc new velocities
 m.updateDofGroupsDotByTotal(v) // update vel at nodes
 a = MInv.luForBack(p - rf - C*v) // calc accel from equil
 m.updateDofGroupsDotDotByTotal(a) // update accel at nodes
 lastTime = time; // update lastTime
 m.commit(); // commit state of model
}
```
The total loads are first formed using the `assembleLoad` method; `deltaR` is calculated, and the iteration commences. In each iteration, the stiffness matrix is formed, the addition displacement is calculated, the state of the Model is updated, the resisting force, `rf`, is obtained from the Model, and the remaining unbalanced load is calculated. When the iteration is complete, the velocities and accelerations at the end of the time step are calculated, and the Model is updated. Finally, the state of the Model is committed.

6.2 Substructuring

Substructuring is a process whereby the complete model is broken down into submodels that are connected at their common nodes. Substructuring is typically applied when a linear submodel is repeated within an assemblage, such as a multi-span bridge with identical deck components. The submodels are linear, so it is advantageous to calculate the properties of the submodel once, and reuse this for all instances of the submodel.

A submodel is represented to the Model, in which it resides, as a Superelement. The Superelement provides stiffness, mass, damping, and resisting force to the Nodes in the Model to which it attaches, in the same way as an Element. In fact, a Superelement is an Element. This relationship was demonstrated in the entity relationship diagram for the element object as Figure 4.2.2a. The figure is repeated here for clarity as Figure 6.2a.
A Superelement is a type of Element that is contained in a Model. A Superelement also has a Model. The contained Model object represents a submodel which is hidden from the Model in which the Superelement resides. This recursive relationship between Superelements and Models can create any number of levels of substructuring. To represent the initial state and loads within the submodel, a Superelement may be associated with SuperElementInitialState and SuperElementLoad objects.

The Superelement is a subclass of the abstract Element class so it must implement all the methods of the Element class defined in Table 4.2.2. The table is shown again below as Table 6.2a.
<table>
<thead>
<tr>
<th>Method</th>
<th>Arguments</th>
<th>Return</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction</td>
<td>Unique to each element, but includes instances of Constitutive Models</td>
<td></td>
<td>Creates an instance of a specific type of Element</td>
</tr>
<tr>
<td>getStiff</td>
<td></td>
<td>Stiffness matrix augmented with transformation into known Coord Sys</td>
<td>Provides the current linearized stiffness</td>
</tr>
<tr>
<td>getDamp</td>
<td></td>
<td>Damping matrix augmented with transformation into known Coord Sys</td>
<td>Provides the current linearized Damping matrix</td>
</tr>
<tr>
<td>getMass</td>
<td></td>
<td>Mass matrix augmented with transformation into known Coord Sys</td>
<td>Provides the current linearized Mass matrix</td>
</tr>
<tr>
<td>getResistingForce</td>
<td></td>
<td>Load vector augmented with Coord Sys</td>
<td>Provides the current resisting force, including the initial state and element loads</td>
</tr>
<tr>
<td>updateState</td>
<td></td>
<td></td>
<td>Causes the Element to update its state from the Nodes</td>
</tr>
<tr>
<td>getEventFactor</td>
<td></td>
<td>Event Factor</td>
<td>Returns the current event factor</td>
</tr>
<tr>
<td>initialize</td>
<td>Unique to each type of Element</td>
<td></td>
<td>Announces the presence of an Initial Element State</td>
</tr>
<tr>
<td>commitState</td>
<td></td>
<td></td>
<td>Commits the current state of the Element</td>
</tr>
<tr>
<td>getConnectingDof</td>
<td></td>
<td>list of dof</td>
<td>Returns a list of dof to which the element attaches</td>
</tr>
</tbody>
</table>

**Table 6.2a Element Interface Definition**

In order to represent the submodel as an Element, the Superelement must be able to update the state of the submodel according to the state of the model, and communicate the properties of the submodel to the model. As shown in Figure 6.2b, a submodel consists of internal degrees of freedom ($u_i$), which are unique to the submodel, and external degrees of freedom ($u_e$), which are associated with degrees of freedom in the model. To update the state of the submodel, the Superelement obtains the response values of the model degrees of freedom, interprets them in terms of the external degrees of freedom of the submodel, and calculates the values for the internal degrees of freedom. To communicate the properties of the submodel to the model, the
Superelement transforms the properties of the submodel into external degree of freedom measures.

![Figure 6.2b Internal and External Degrees of Freedom for a Submodel](image)

The complete set of degrees of freedom for the submodel can be represented as:

\[
\begin{bmatrix}
  u_e \\
  u_i
\end{bmatrix}
\]

Similarly partitioning the equation of equilibrium produces:

\[
\begin{bmatrix}
  K_{ee} & K_{ei} \\
  K_{ie} & K_{ii}
\end{bmatrix}
\begin{bmatrix}
  u_e \\
  u_i
\end{bmatrix} = \begin{bmatrix}
  f_e \\
  f_i
\end{bmatrix}
\]

Through the process of static condensation, the properties of the submodel can be represented in terms of the external degrees of freedom as:

\[
K^+ = T^T KT \\
M^+ = T^T MT \\
C^+ = T^T CT \\
F^+ = T^T F
\]
where:

\[
T = \begin{bmatrix}
I \\
-K^{-1}K^T_f
\end{bmatrix}
\]

The displacements for the complete set of degrees of freedom can be represented by the external degree of freedom displacements by:

\[
\begin{bmatrix}
u_e \\
u_i
\end{bmatrix} = Tu_e + \begin{bmatrix}
0 \\
K^{-1}f_i
\end{bmatrix}
\]

Substructuring has been implemented in the finite element program in C++ using three different objects. The FeaSuperElement object implements the Superelement, the FeaSuperElementLoad object handles the loads within the submodel, and the FeaSuperElementInitialState object handles the initial states of the Elements within the submodel.

### 6.2.1 FeaSuperElement

The implementation of the FeaSuperElement object deals primarily with the details of the creation of the previously defined transformation matrix, \( T \), and its application to the properties of the submodel. The C++ interface for the FeaSuperElement object is shown below:

```cpp
class FeaSuperElement : public FeaElement {
 // private instance variables
 // list of nodes in model
 List<FeaDofGroup*>* modelNodes;
 // list of ext nodes in submodel
```
A Superelement is constructed by providing the Model object that forms the submodel, a list of Nodes in the Model to which the Superelement attaches, and the corresponding list of Nodes in the submodel. The implementation for the constructor is shown below. The Superelement treats the submodel in a manner similar to the treatment of a Model
by an Analysis object. The Superelement creates a Constraint Handler, Reorder Handler, Matrix Handler, and a Map for the submodel. In this implementation of a Superelement, the formation of the transformation matrix requires a partitioning of the submodel's stiffness matrix to isolate the connecting-node degrees of freedom from the internal-node degrees of freedom. To accomplish this, a FeaDefinedOrderHandler is chosen. It is given the list of connecting Nodes in the submodel, and will ensure that these degrees of freedom are numbered before the degrees of freedom in the internal nodes. Finally, the constructor for the Superelement invokes the setUpT method to create the transformation matrix.

```cpp
FeaSuperElement(const char* s, FeaModel& smod, List<FeaDofGroup*>& modNodes, List<FeaDofGroup*>& subModNodes) : FeaElement(s)
// constructor for the FeaSuperElement class
{
 subModel = &smod; // model for the submodel
 subModelNodes = &subModNodes; // list of ext nodes in subModel
 modelNodes = &modNodes; // corres. list of nodes in model

 // construct the constraint handler for the subModel
 conH = new FeaTransConHandler(*subModel);

 // construct the reorder handler for the subModel with the dof
 // from the external nodes of the subModel numbered in order
 // first
 reoH = new FeaDefinedOrderHandler(*subModel, *subModelNodes);

 // construct the map for the subModel
 subMap = new FeaMap(*subModel, *conH, *reoH);

 // construct the matrix handler for the subModel
 matH = new FeaFullMatrixHandler(*subMap);

 // set up the dimensions of the problem
 // (numEq, numExt, numBlocks)
 numEq = subMap->numEq(); // number of equations for subModel
 numExt = 0; // number of eq for ext dof
 numBlocks = 0; // number of blocks for trans
 itr(*subModelNodes); // create iter for subModel nodes

 // iterate through the subModel nodes to create numExt and
 // numBlocks
 iterateThrough (itr) // itr() is FeaDofGroup object
 {
 numExt++;
 numBlocks++;
 }
```
// get the list of FeaDof descriptions from the node
// and iterate thru it
itr1 = itr().getDescItr(); // create iter for dof desc
// iterate through the dof desc at the node
iterateThrough ( itr1 ) // itr1() is a FeaDofDesc object
{
    numExt += itr1().nDof(); // add # of components
    numBlocks++; // add a block for desc
}

oldDisp = new FeaFullVector(numEq); // set up oldDisp vector
setUpT(); // set up the trans instance variable
}

The `setUpT` method constructs the `FeaTransformation` object `trans`, which is used to transform the properties of the submodel from a submodel basis to a model basis. The implementation for the `setUpT` method is shown below. A `FeaTransformation` object must be used by all Elements to convey property matrices and vectors to the Map. A `FeaTransformation` object contains the transformation matrix, in the form of a block matrix, and a list of Degree of Freedom Descriptions, which label the column blocks. To form the transformation matrix, the stiffness matrix for the submodel is formed into a 2 by 2 block matrix, partitioned according to the division of internal and external degrees of freedom. The columns of the transformation matrix are then built along with the degree of freedom descriptions. With `trans` defined in this manner, it can be used directly by the `getStiff`, `getMass`, `getDamp`, and `getResistingForce` methods.

```java
void setUpT()
// sets up the trans instance variable
{
 k(numExt-1, numExt-1) = 0.0; // set up K as 2x2 block matrix
 k(numEq-1, numEq-1) = 0.0;

 //assemble the complete stiffness matrix
 itre = subMap.elementItr(); // itre() is an FeaElement
 iterateThrough (itre)
```
```java

def subMap.getElStiff(itre())
 kel = subMap.getElStiff(itre());
 k assemble(kel.getTransformedK(), kel.getId());
}

kei = k.getBlock(0,1); //separate components of K
kii = k.getBlock(1,1);
kii.luDecomp(); // Decompose Kii

// set up the transformation matrix block by block
// numBlocks along the columns and 1 block down the rows
curColOfT = 0;
trans = new FeaTransformation(1,numBlocks);
// iterate thru the list of nodes in the subModel and Model
// simultaneously
itrSub(subModelNodes); // create iterator for subModel Nodes
itrMod(modelNodes); // create iterator of Model Nodes
itrMod.init(); // initiate the model node iterator

// iterate through the sub model nodes
iterateThrough (itrSub)
{
 // get the list of Dof descriptions from the node
 // and iterate thru it
 itr1 = itrSub().getDescItr(); // iter for submodel desc.
 itr1Mod = itrMod().getDescItr(); // iter for model desc.
 itr1Mod.init(); // initiate the model desc.

 // iterate through sub model
 iterateThrough (itr1)
 {
 // block is numEq by number of dof to represent
 // the vector in the coord sys
 t = new FeaFullMatrix(numEq,itr1().nDof());
 for (int i = 0; i < itr1()->nDof(); i++)
 {
 tmp = new FeaFullVector(numEq-numExt);
 // place portion of kei in tmp
 int j;
 for (j = 0; j < numEq - numExt; j++)
 {
 tmp(j) = -kei(curColOfT,j);
 }
 // solve to get -kii^-1 * kei^t
 kii.luForBack(*tmp);
 // place a one for the external dof to be retained
 t(curColOfT,i) = 1.0;
 // place -kii^-1 * kei^t in t
 for (j = 0; j < numEq - numExt; j++)
 {
 t(numExt+j,i) = tmp(j);
 }
 }
 }
}
curColOfT++;
}
// create description for the block
dI = FeaTransDesc(itr1().getType(), itrMod(),
 itr1().getCoOrdSys());
// add description and transformation block to trans
trans.addDesc(*dI, *t);
++itr1Mod; // increment the iterator for the model desc.
}
++itrMod; // increment the iterator for the model nodes
}

With the trans object defined, the work of the Superelement is straightforward. When a given property is requested, the Superelement forms the property of the submodel using the submodel's Map object, attaches a copy of the trans object to it, and passes back the result. For example, the implementation for the getResistingForce method is:

```
FeaAugmentedVector& getResistingForce()
{
    // assemble the complete resisting force vector p
    p = new FeaFullVector(numEq);

    // add in the nodal forces for the subModel
    itr1 = subMap.loadItr(loadCase);  // get iter for loads
    iterateThrough (itr1)  // itr1() is a FeaLoad object
    {
        ldv = subMap.getLoad( itr1(), currentTime );
        p.assemble( ldv.getTransformedLoad(), ldv.getId() );
    }

    // assemble the element resisting forces for the subModel
    itr = subMap.elementItr();  // get iter for the elements
    iterateThrough (itr)  // itr() is a FeaElement
    {
        ldv = subMap.getResistingForce( itr() );
        p.assemble( ldv.getTransformedLoad(), ldv.getId() );
    }

    // save force vector for getdExt() method
    fi = p;
}
```
First, a vector \(p \) is created. An iterator for the Elements in the submodel is obtained from the submodel's Map. One by one, the resisting force vectors from the Elements of the submodel are obtained and assembled into \(p \). The nodal forces applied to the submodel for the active Load Case are then added to \(p \). The resisting force vector is saved as \(\mathbf{f}_i \) for later processing by the \texttt{getdExt} method. The \texttt{FeaAugmentedVector} object is formed by using \(p \) and a copy of \(\mathbf{trans} \). This is returned to the caller of the method. The methods for mass, damping, stiffness, and load follow in a similar manner.

```cpp
FeaAugmentedMatrix& getStiff()
{
    k = new FeaFullMatrix(numEq, numEq); // stiffness matrix

    // iterate thru the Elements and assemble stiffness
    itr = subMap.elementItr(); // get iter for elements
    iterateThrough ( itr ) // itr() is a FeaElement
    {
        kel = subMap.getElStiff( itr() );
        k.assemble( kel.getTransformedK(), kel.getId() );
    }

    // create and return augmented stiffness matrix
    return (new FeaAugmentedMatrix(k, trans));
}

FeaAugmentedMatrix& getMass()
{
    mass = new FeaFullMatrix(numEq, numEq); // mass matrix

    // iterate thru the Elements and assemble mass
    itr = subMap.elementItr(); // get iter for elements
    iterateThrough ( itr ) // itr() is a FeaElement
    {
        kel = subMap.getMass( itr() );
        mass.assemble( kel.getTransformedK(), kel.getId() );
    }

    // create and return augmented mass matrix
```
return (new FeaAugmentedMatrix(mass, trans));
}

FeaAugmentedMatrix& FeaSuperElement::getDamp()
{
 damp = new FeaFullMatrix(numEq, numEq); // damp matrix
 // iterate thru the Elements and assemble damping
 itr = subMap.elementItr(); // get iter for elements
 iterateThrough (itr) // itr() is a FeaElement
 {
 kel = subMap.getDamp(itr());
 damp.assemble(kel.getTransformedK(), kel.getId());
 }
 // create and return augmented damping matrix
 return (new FeaAugmentedMatrix(damp, trans));
}

The updateState, commitState and getEventFactor methods in the Superelement require that the Nodes of the submodel be updated with the response values of the Nodes in the Model. To perform this function, the getdExt method is provided. The getdExt method queries the Nodes in the Model to which the Superelement attaches; assembles a vector of displacements of these Nodes in terms of the unknowns in the Superelement. The method simultaneously loops through the list of corresponding Nodes in the model and submodel, queries the model Nodes as to their current total displacement vectors, interprets the vectors in terms of the coordinate systems at the corresponding submodel Node, and places the components in the appropriate location of the displacement vector. The displacements for the internal degrees of freedom in the submodel are determined from:

\[
\begin{bmatrix}
 u_e \\
 u_i
\end{bmatrix}
= T u_e + \begin{bmatrix}
 0 \\
 K_{ii}^{-1} f_i
\end{bmatrix}
\]

Both \(T \) and \(K_{ii}^{-1} \) are generated and stored in the Superelement by the setupT method. \(f_i \) is stored in the Superelement by the getResistingForce method. The
complete displacement vector for the submodel is returned. The implementation for the \texttt{get_dExt} method is shown below:

```cpp
FeaVector& getdExt()
// returns a vector representing the current external
// displacements. The ordering of dExt is defined by the
// reorder handler chosen (FeaDefinedOrder)
{
    dExt = new FeaFullVector(numExt); // set up the return value
    count = 0; // counter for the placement of dof values in dExt

    // iterate over the model nodes and external submodel nodes
    // simultaneously
    itr(modelNodes); // create iterator for model Nodes
    itrSub(subModelNodes); // create iterator of submodel Nodes
    itrSub.init(); // initiate submodel node iterator

    // iterate through the submodel nodes
    iterateThrough ( itr )
    {
        // get the list of Dof descriptions from the node
        // and iterate thru it
        itr1 = itr().getDescItr(); // iter for model desc
        itr1Sub = itrSub().getDescItr(); // iter for submodel desc
        itr1Sub.init(); // initiate submodel desc
        iterateThrough ( itr1 )
        {
            // get the current total disp vector from the model and
            // interpret it in terms of the coordinate system at the
            // associated subModel node
            d1 = ( itr().getTotalV(itr1().getType())
                .get_rep_in(itr1Sub().getCoOrdSys()));
            // loop through d1 and place the results in dExt
            for ( int i = 0; i < d1.getSize(); i++ )
            {
                dExt(count) = d1(i);
                count++; // increment placement counter
            }
            ++itr1Sub; // increment the submodel node desc iter
        }
        ++itrSub; // increment the submodel node iter
    }
    return dExt; // return the displacement vector
}
```
The `updateState` method calls the submodel Map's `updateDofGroupsByTotal` method with the complete displacement vector of the submodel as an argument. The Elements of the submodel are then updated by the submodel Map. The implementation for the `updateState` method is shown below:

```cpp
void updateState()
{
    //get model dof state
dExt = getdExt();

    //transform to complete total displacement
    Disp = trans.getTrans() * dExt;

    //update submodel
    subMap.updateDofGroupsByTotal(Disp);

    // save displacements for event factor calc
    oldDisp = Disp;

    //update element state
    subMap.updateElements();
}
```

The `commitState` method is similar except that the Nodes and Elements of the submodel are committed by the submodel Map object. The implementation for the `commitState` method is shown below:

```cpp
void FeaSuperElement::commitState()
{
    //get model dof state
dExt = getdExt();

    //transform to complete total displacement
    Disp = trans.getTrans() * dExt;

    //update submodel
    subMap.updateDofGroupsByTotal(Disp);

    // save displacements for event factor calc
    oldDisp = Disp;

    // commit the nodes and elements
```
The `getEventFactor` updates the nodal displacements using the `updateDofGroupsByTotal` method of the submodel Map with the total displacements obtained from the `getdExt` method as an argument. It then instructs the submodel Map to query the Elements and obtain the smallest event factor. Upon completion of the method, the submodel Nodes are returned to their previous state using the `oldDisp` instance variable (which is kept up by the update and commit state methods). The implementation for the `getEventFactor` method is shown below:

```cpp
double FeaSuperElement::getEventFactor()
{
    //get model dof state
    dExt = getdExt();

    //transform to complete total displacement
    Disp = trans.getTrans() * dExt;

    //update submodel
    subMap.updateDofGroupsByTotal(Disp);

    // calc event factor for elements
    factor = subMap.getMinEventFactor();

    // return the nodes to their previous state
    subMap.updateDofGroupsByTotal(oldDisp);

    return factor;
}
```

The `setInitialLoad` method is called by the `FeaSuperElementInitialState` object. It is passed the name of the Load Case in the submodel that contains the initial element state information. The `setInitialState` method obtains the initial element state iterator from the submodel's Map. It then iterates through the list of Initial Element State objects and calls the `initialize` method; thereby initializing the state of the
Elements of the submodel. The implementation for the `setInitialLoad` method is shown below:

```java
void setInitialLoad(char* loadCase)
{
    // iterate through the initial element states in the load case
    itr = subMap.initElStItr(loadCase); // iter for init El State
    iterateThrough ( itr ) // itr() is a FeaInitElState object
    {
        itr().initialize();
    }
}
```

The `setLoad` method is called by the `FeaSuperElementLoad` object. It is passed the name of the Load Case in the submodel that is to be applied to the submodel. The `setLoad` method then obtains the load iterator from the submodel's Map and iterates through the list of Loads, invoking their `getLoad` method. This sets up both the Element and Nodal Loads with the correct values of time for later processing by the `getResisitingForce` method.

```java
void setLoad(char* loadCase, double time = 0.0)
{
    currentTime = time; // save time for use by resisting force

    // iterate through the loads
    itr = subMap.loadItr(loadCase); // iter for the loads
    iterateThrough ( itr )
    {
        itr().getLoad(time); // element, thus no load is returned
    }
}
```
6.2.2 FeaSuperElementLoad

The purpose of the FeaSuperElementLoad object is to maintain the name of the submodel Load Case that describes the Loads on the Elements and Nodes of the submodel. The FeaSuperElementLoad object will itself be held in a Load Case for the complete model. Upon initialization, the FeaSuperElementLoad object registers its presence with the Superelement to which it applies, and gives the Superelement the name of the submodel Load Case. The Superelement will use this information to include the loads in the resisting force computation. The FeaSuperElementLoad class is slightly different from other Element Load classes in that there is only one type of loading for a Superelement. Other Element types can have any number of different types of element loads. For example, a Truss Bar could have both uniform load or point load types of element loading.

The C++ interface for the FeaSuperElementLoad object and the implementation for its methods are shown below:

```cpp
class FeaSuperElementLoad : public FeaElementLoad {
  FeaSuperElement* el; // element to which the load applies
  char* subModelLoadCase; // name of the load case in the subModel
  double time; // current value of time

public:
  // constructor
  FeaSuperElementLoad(FeaSuperElement&, char*);

  // methods to return the current loads
  FeaAugmentedVector& getLoad();
  FeaAugmentedVector& getLoad(double);
};

FeaSuperElementLoad(FeaSuperElement& ne, char* s)
  // constructor for FeaSuperElementLoad
{
  el = ne; // superElement to be loaded
  subModelLoadCase = s; // load case name
}
```
FeaAugmentedVector& getLoad()
// sets up the superelement for the load and returns zero
{
 el.setLoad(subModelLoadCase);
 return NULL;
}

FeaAugmentedVector& getLoad(double time)
// sets up the superelement for the load and returns zero
{
 el.setLoad(subModelLoadCase, time);
 return NULL;
}

6.2.3 FeaSuperElementInitialState

The purpose of the FeaSuperElementInitialState object is to maintain the name of the submodel Load Case that describes the initial states of the Elements of the submodel. The FeaSuperElementInitialState object will itself be held in a Load Case for the complete model. Upon initialization, the FeaSuperElementInitialState object registers its presence with the Superelement to which it applies, and gives the Superelement the name of the submodel Load Case that holds the Initial Element State objects. The Superelement will use this information to include the initial element states in the resisting force computation. The FeaSuperElementInitialState class is slightly different from other Initial Element State classes in that there is only one type of Initial Element State for a Superelement. Other Element types can have any number of different types of Initial Element State.

The C++ interface for the FeaSuperElementInitialState object and the implementation for its methods are shown below:
class FeaSuperElementInitialState : public FeaInitialElementState
{
 FeaSuperElement* el; // element that has the initial state
 char* subModelLoadCase; // load case that contains the init state
 public:
 // constructor
 FeaSuperElementInitialState(FeaSuperElement&, char*);

 // applies the initial state
 FeaAugmentedVector& initialize();
};

FeaSuperElementInitialState(FeaSuperElement& ne, char* s)
 // constructor
 {
el = ≠ // element with initial state
 subModelLoadCase = s; // name of load case
 }

 void initialize()
 // initializes the state of the superElement
 {
 el.setInitialLoad(subModelLoadCase);
 }

6.3 2D Beam Element With End Hinges

One of the more useful elements in the analysis of steel and reinforced concrete frames is the two-dimensional beam element with hinges at the ends. For steel beams, the moment rotation constitutive model for the hinges is often assumed as rigid perfectly plastic. For reinforced concrete, a more complex behavior is often assumed. In either case, the basic element is identical. The difference lies in the assumptions for the hinge constitutive model. Thus, it is desirable to produce an Element object that can accept any moment rotation Constitutive Model.

For this element implementation, an elastic perfectly plastic moment rotation Constitutive Model was developed. Although it was developed for this element, it
conforms to the requirements for moment-rotation Constitutive Models. It can be used wherever a moment-rotation Constitutive Model is required. Conversely, the Element can also use any moment-rotation Constitutive Model that is developed in the future.

The 2D Hinged Beam Element has been developed as a planar element, which required a new 2D rectangular coordinate system. The new coordinate system is a subclass of the abstract class FeaCoOrdSys. The 2D Hinged Beam Element interfaces with the rest of the model as if it were in a two-dimensional world. But since the 2D Hinged Beam Element may be used in a three-dimensional context, the orientation of the strong bending axis of the beam in 3D must be known. The 2D Hinged Beam Element must be given a Geometric Point in addition to the Nodes to which it attaches. If the translational degrees of freedom at the two Nodes lie in the same plane, the additional Geometric Point is not required. The strong bending axis is assumed to be perpendicular to the plane of the problem.

6.3.1 Moment-Rotation Elastic-Perfectly Plastic Constitutive Model

A moment-rotation relationship must be described for the hinges at the ends of the beam. An elastic perfectly plastic relationship will be used to demonstrate the element. The moment-rotation Constitutive Model is a subclass of the 1D Constitutive Model. The moment rotation class is further subclassed into the concrete classes 1DMRLinearElastic and 1DMRElasticPerfectlyPlastic, etc.

The methods that a Constitutive Model object must provide to the system are defined in Table 4.2.3a, and are shown again below as Table 6.3.1a.
<table>
<thead>
<tr>
<th>Method</th>
<th>Arguments</th>
<th>Return</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction</td>
<td>Parameters necessary to define the model, including the Material</td>
<td>Creates an instance of a Constitutive Model</td>
<td></td>
</tr>
<tr>
<td>setIncV</td>
<td>Action/Deformation object with an array of deformations</td>
<td>Sets the increment of the current strain state</td>
<td></td>
</tr>
<tr>
<td>setTotalV</td>
<td>Action/Deformation object with an array of deformations</td>
<td>Sets the total current strain state</td>
<td></td>
</tr>
<tr>
<td>setInitialV</td>
<td>Action/Deformation object with an array of initial deformations</td>
<td>Sets the initial state</td>
<td></td>
</tr>
<tr>
<td>commit</td>
<td></td>
<td>Commits the state</td>
<td></td>
</tr>
<tr>
<td>getCurrentPlusDeltaS</td>
<td>Action/Deformation object with an array of total actions</td>
<td>Returns the total stress state</td>
<td></td>
</tr>
<tr>
<td>getCurrentCommittedS</td>
<td>Action/Deformation object with an array of incremental actions</td>
<td>Returns the last increment in stress state</td>
<td></td>
</tr>
<tr>
<td>getK</td>
<td>Constitutive matrix</td>
<td>Returns the current linearization</td>
<td></td>
</tr>
<tr>
<td>getEventFactorIncV</td>
<td>Action/Deformation object with an array of deformations</td>
<td>Event Factor</td>
<td>Returns the current event factor</td>
</tr>
<tr>
<td>getEventFactorTotalV</td>
<td>Action/Deformation object with an array of deformations</td>
<td>Event Factor</td>
<td>Returns the current event factor</td>
</tr>
</tbody>
</table>

Table 6.3.1a Constitutive Model Interface Definition

A moment-rotation Constitutive Model is responsible for maintaining and reporting on the state of the moment-rotation relationship. The elastic-perfectly-plastic response for the model is show below in Figure 6.3.1b. The model can be in one of three states at any instance: it can be yielding with a negative moment (zone 1); it can be in the elastic region (zone 2); or it can be yielding with a positive moment (zone 3).
A Constitutive Model can initialize, update, commit, and report on its state at the request of an Element. In accordance with the object design, the Constitutive Model must remain elastic during an update of its state, but may be inelastic immediately after its state is committed. The Constitutive Model tracks its last committed state (which defines the action/deformation curve) and its total state (which defines its position on the curve). In this case, the last committed state defines the limits of the three zones. The current state is on the moment-rotation curve defined by the last committed state.

When the model is instructed to commit its state, it must save the current state as the committed state, and adjust the limits of the three zones. If it is in a plastic zone (1 or 3), the limits of the zones are adjusted such that a reversal in rotation will cause the model to enter the elastic zone (zone 2).

The state of the model is updated by adding to the current rotation by either specifying a new increment in rotation from the last committed state or a new total rotation. For either case, the model must track the new current state and the zone in which it resides. The model calculates the resisting moment based on the zone for either the current
state or the last committed state as requested. The stiffness of the model is reported based on the current state.

The event factor is defined as the proportion of the difference between the current state and the last committed state that can be accommodated without crossing the boundaries of a zone. The event factor can be obtained by specifying either a new increment in rotation from the last committed state or a new total rotation. This new rotation is used only for the event factor calculation, and does not affect the state of the model.

The elastic perfectly plastic moment rotation Constitutive Model is implemented as the Fea1DMRotElasticPlastic class. The C++ interface for the class is:

class Fea1DMRotElasticPlastic : public Fea1DConstitutiveModel{
 double currentV; // current committed value of rotation
 double deltaV; // current change in rotation from the
 // committed to the total
 double initialV; // initial value of rotation
 double k1; // elastic stiffness
 double vChangePos;// current upper elastic rotation limit
 double vChangeNeg;// current lower elastic rotation limit
 double vSpread; // elastic rotation range (does not vary)
 int curZone; // current committed zone:
 // 1 - -ve , 2- elastic, 3- +ve
 int totalZone; // total zone: 1 - -ve , 2- elastic, 3- +ve
public:
 // constructor
 Fea1DMRotElasticPlastic(double stiffness1,
 double Myield);
 // copies the instance
 Fea1DConstitutiveModel& copy();

 // update and commit state
 void setIncV(double);
 void setTotalV(double);
 void setInitialV(double);
 void commit();

 // returns the required moment
double getCurrentCommittedS();
double getCurrentPlusDeltaS();

// return the current stiffness
double getK();

// return the event factor given a new increment or total rot.
double getEventFactorIncV(double);
double getEventFactorTotalV(double);

The implementation of the class is fairly straightforward. The limits of the zones are
defined by the instance variables vChangePos, vChangeNeg, and vSpread. The
last committed state is defined by currentV. The current state is not stored directly,
rather the difference between the current state and the last committed state is stored as
deltaV. The implementation for the methods is shown below:

Fea1DMRotElasticPlastic(double stiffness1, double Myield)
// creates an instance of the class
{
 k1 = stiffness1;
 vChangePos = Myield/k1;
 vChangeNeg = -Myield/k1;
 vSpread = 2.0 * Myield/k1;
 previousV = 0.0;
 currentV = 0.0;
 deltaV = 0.0;
 initialV = 0.0;
 curZone = 2;
 totalZone = 2;
}

Fea1DConstitutiveModel& copy()
// creates a copy (useful when the client is not aware of the
// actual subclass of constitutive model being held
{
 return *(new Fea1DMRotElasticPlastic(*this));
}

void setIncV(double nv)
// update state by specifying a new increment in rotation
{
 deltaV = nv;
 // set totalZone
double totalV = initialV + currentV + deltaV;
if (totalV >= vChangePos) totalZone = 3;
else if (totalV <= vChangeNeg) totalZone = 1;
else totalZone = 2;
}

void setTotalV(double nv)
// update state by specifying a new total rotation
{
 deltaV = nv - currentV;
 // set totalZone
 double totalV = initialV + currentV + deltaV;
 if (totalV >= vChangePos) totalZone = 3;
 else if (totalV <= vChangeNeg) totalZone = 1;
 else totalZone = 2;
}

void setInitialV(double nv)
// sets the initial rotation
{
 initialV = nv;
}

void commit()
// commits the current state
{
 double v = initialV + currentV;
 switch (curZone) {
 case 1:
 switch (totalZone) {
 case 1:
 vChangeNeg = v+deltaV;
 vChangePos = vChangeNeg + vSpread;
 break;
 case 2:
 curZone = 2;
 break;
 case 3:
 vChangePos = v + deltaV;
 vChangeNeg = vChangePos - vSpread;
 curZone = 3;
 break;
 }
 break;
 case 2:
 switch (totalZone) {
 case 1:
 vChangeNeg = v+deltaV;
 vChangePos = vChangeNeg + vSpread;
 curZone = 1;
 break;
 case 2:
 break;
 }
break;
case 3:
 vChangePos = v + deltaV;
 vChangeNeg = vChangePos - vSpread;
 curZone = 3;
 break;
}
break;
case 3:
switch (totalZone) {
case 1:
 vChangeNeg = v + deltaV;
 vChangePos = vChangeNeg + vSpread;
 curZone = 1;
 break;
case 2:
 curZone = 2;
 break;
case 3:
 vChangePos = v + deltaV;
 vChangeNeg = vChangePos - vSpread;
 break;
}
break;

previousV = currentV;
currentV += deltaV;
deltaV = 0.0;
}

double getCurrentCommittedS()
// returns the current committed moment value
{
 double v = initialV + currentV;
 double ans;
 if (v <= vChangePos && v >= vChangeNeg)
 ans = k1*(v - (vChangePos+vChangeNeg)/2.0);
 else
 {
 if (v > vChangePos)
 ans = k1*(vChangePos-vChangeNeg)/2.0;
 else
 ans = -k1*(vChangePos-vChangeNeg)/2.0;
 }
 return ans;
}

double getCurrentPlusDeltaS()
// returns the total moment value (committed + delta)
{
 double v = initialV + currentV + deltaV;

double ans;
switch (totalZone) {
case 1:
 ans = -k1*vSpread/2.0;
 break;
case 2:
 ans = k1*(v - (vChangePos-vSpread/2.0));
 break;
case 3:
 ans = k1*vSpread/2.0;
 break;
}
return ans;
}

double getK()
{
 double ans;
 if (totalZone == 2) ans = k1;
 else ans = 0.0;
 return ans;
}

double getEventFactorIncV(double nv)
// returns the event factor for a new specified increment rot.
{
 double ans;
 double lastIncV = nv;
 double totalV = initialV+currentV + nv;

 if (lastIncV == 0.0) ans = 1.0;
 else
 {
 switch (curZone) {
 case 1:
 if (totalV <= vChangeNeg)
 ans = 1.0; // does not hit vChangeNeg, no event
 else
 ans = 0.0;
 break;
 case 2:
 if ((totalV > vChangeNeg) && (totalV < vChangePos))
 ans = 1.0; // stays within curZone 2, no event
 else
 {
 if (totalV >= vChangePos) // goes over vChangePos
 ans = (vChangePos - (initialV+currentV)) / lastIncV;
 else // goes under vChangeNeg
 ans = ((initialV+currentV) - vChangeNeg) / (-lastIncV);
 }
 }
break;
case 3:
 if (totalV >= vChangePos)
 ans = 1.0; // does not hit vChangePos, no event
 else
 ans = 0.0;
 break;
}

return fabs(ans);
}

double getEventFactorTotalV(double nv)
// returns the event factor for a specified total rotation
{
 double ans;
 double lastIncV = nv - currentV;
 double totalV = initialV+nv;

 if (lastIncV == 0.0) ans = 1.0;
 else
 {
 switch (curZone) {
 case 1:
 if (totalV <= vChangeNeg)
 ans = 1.0; // does not hit vChangeNeg, no event
 else
 ans = 0.0;
 break;
 case 2:
 if ((totalV > vChangeNeg) && (totalV < vChangePos))
 ans = 1.0; // stays within curZone 2, no event
 else
 {
 if (totalV >= vChangePos) // goes over vChangePos
 ans = (vChangePos - (initialV+currentV)) / lastIncV;
 else // goes under vChangeNeg
 ans = ((initialV+currentV) - vChangeNeg) / (-lastIncV);
 }
 break;
 case 3:
 if (totalV >= vChangePos)
 ans = 1.0; // does not hit vChangePos, no event
 else
 ans = 0.0;
 break;
 }
 }
6.3.2 2D Rectangular Coordinate System

The geometry of the 2D Hinged Beam Element is defined by two Nodes, which describe the axis of the beam, and an additional Geometric Point that lies in the plane that is perpendicular to the strong bending axis of the beam. The deformation of the beam is obtained from the finite element system by means of Geometric Vectors formulated within Coordinate Systems. The rotational component of deformation is one-dimensional. The previously defined 1D rectangular Coordinate System class may be used for this purpose. The translational component of deformation is two-dimensional. A new 2D rectangular Coordinate System class in needed.

The methods that a Coordinate System object must provide are defined in Table 4.4.1a, and are shown again below as Table 6.3.2a.

<table>
<thead>
<tr>
<th>Method</th>
<th>Arguments</th>
<th>Return</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction</td>
<td>parameters unique to the specific System that relate it to the global system</td>
<td></td>
<td>Creates an instance of a specific type of Coordinate System</td>
</tr>
<tr>
<td>num_of_axis</td>
<td>number of axis</td>
<td>number of axis</td>
<td>Returns the number of axis in the Coordinate System</td>
</tr>
<tr>
<td>trans_to_global</td>
<td>transformation matrix</td>
<td>transformation matrix</td>
<td>Returns the transformation matrix to convert ordinates in this system to the Global</td>
</tr>
<tr>
<td>trans_from_global</td>
<td>transformation matrix</td>
<td>transformation matrix</td>
<td>Returns the transformation matrix to convert ordinates in Global system to this system</td>
</tr>
</tbody>
</table>

Table 6.3.2a Coordinate System Interface Definition
A Coordinate System object is responsible for storing and reporting on its rotational positioning relative to a 3D rectangular global Coordinate System. This is accomplished by maintaining a rotation matrix of direction cosines that can transform the ordinates of a point in the system to that in the global system. The format of the rotation matrix is:

\[
\text{rotation} = \begin{bmatrix}
C_{11} & C_{12} \\
C_{21} & C_{22} \\
C_{31} & C_{32}
\end{bmatrix}
\]

where \(C_i \) is the cosine of the angle the \(i \)-axis of the global system and the \(j \)-axis of the local system.

The calculation of the direction cosines is given in literature Beaufait et al [5]. The rotation matrix itself provides the transformation matrix to global coordinates, while its transpose provides the transformation matrix from global coordinates.

The two-dimensional rectangular Coordinate System was implemented as the Fea2DRect class. The C++ interface for the class is:

```cpp
class Fea2DRect : public FeaCoOrdSys {
    FeaFullMatrix* rot; // matrix of direction cosines
public:
    // constructors
    Fea2DRect();
    Fea2DRect(FeaFullVector&);
    Fea2DRect(FeaGeoPoint&, FeaGeoPoint&, FeaGeoPoint&);

    // transformations
    FeaFullMatrix& get_trans_to(Fea2DRect&);
    FeaFullMatrix& trans_to_global();
    FeaFullMatrix& trans_from_global();
    int num_of_axis();
};
```
The implementation of the Fea2DRect class is fairly straightforward. Two constructors are provided. The first takes a vector of length 3, which defines the three sequential rotation angles, in radians, about the 3, 1, and 2 axis necessary to align the global system with the defined system. These angles directly define the rotation matrix. The second constructor takes three Geometric Points as its arguments. The Points represent the origin of the Coordinate System, a Point along the positive 1-axis, and a Point along the positive 2-axis, respectively. The implementation for the methods is shown below:

```cpp
Fea2DRect()
// gives global coord system
{  
    rot = new FeaFullMatrix(2,3);
    rot(0,0) = 1.0;
    rot(1,1) = 1.0;
}

Fea2DRect(FeaFullVector& rv)
// sets up rot which is the trans to this system from global
// Taken from "Computer Methods of Structural Analysis",
// Beaufait et al pg. 240
{  
    rot = new FeaFullMatrix(2,3);

    cx = cos(rv(1)) * cos(rv(0));
    cy = sin(rv(1));
    cz = cos(rv(1)) * sin(rv(0));

    lxz = sqrt( cx*cx + cz*cz );

    cp = cos(rv(2));
    sp = sin(rv(2));

    if ( lxz > YAXISTOL ) // Y-Z-X transformation
    {  
        rot(0,0) = cx;
        rot(0,1) = cy;
        rot(0,2) = cz;
```
\[
\begin{align*}
\text{rot}(1,0) &= \frac{-cx\cdot cy\cdot cp - cz \cdot sp}{lxz} \\
\text{rot}(1,1) &= lxz \cdot cp \\
\text{rot}(1,2) &= \frac{-cy \cdot cz \cdot cp + cx \cdot sp}{lxz}
\end{align*}
\]

else // Z-Y-X transformation
{
\[
\begin{align*}
lxy &= \sqrt{cx\cdot cx + cy\cdot cy} \\
\text{rot}(0,0) &= cx \\
\text{rot}(0,1) &= cy \\
\text{rot}(0,2) &= cz \\
\text{rot}(1,0) &= \frac{-cx\cdot cz\cdot sp - cy\cdot cp}{lxy} \\
\text{rot}(1,1) &= \frac{-cy\cdot cz\cdot sp + cx\cdot cp}{lxy} \\
\text{rot}(1,2) &= lxy \cdot sp
\end{align*}
\]
}

Fea2DRect(FeaGeoPoint& n1, FeaGeoPoint& n2, FeaGeoPoint& n3)
// 1-axis from n1 to n2, n3 defines the plane formed
// by the 1-2 axis
// Taken from "Computer Methods of Structural Analysis",
// Beaufait et al pg. 243
{
rot = new FeaFullMatrix(2,3);

double l = n1.lengthTo(n2);
xyz1 = n1.get_rep_in();
xyz2 = n2.get_rep_in();
xyz3 = n3.get_rep_in();

cx = (xyz2(0) - xyz1(0)) / l;
cy = (xyz2(1) - xyz1(1)) / l;
cz = (xyz2(2) - xyz1(2)) / l;

lxz = sqrt(cx\cdot cx + cz\cdot cz);

if (lxz > YAXISTOL) // Y-Z-X transformation
{
double yp = \frac{-cx\cdot cy\cdot xyz3(0) + lxz\cdot xyz3(1) - cy\cdot cz\cdot xyz3(2)}{lxz};
double zp = \frac{-cz\cdot xyz3(0) + cx\cdot xyz3(2)}{lxz};

double lyz = sqrt(yp\cdot yp + zp\cdot zp);

double cp = yp/lyz;
double sp = zp/lyz;

rot(0,0) = cx;
rot(0,1) = cy;
rot(0,2) = cz;
rot(1,0) = \frac{-cx\cdot cy\cdot cp - cz\cdot sp}{lxz};
rot(1,1) = lxz \cdot cp;
rot(1,2) = \frac{-cy\cdot cz\cdot cp + cx\cdot sp}{lxz};
}
else // Z-Y-X transformation
{
 yp = xyz3(1) - xyz1(1);
zp = xyz3(2) - xyz3(2);

 lyz = sqrt(yp*yp + zp*zp);

 cp = yp/lyz;
 sp = zp/lyz;

 lxy = sqrt(cx*cx + cy*cy);

 rot(0,0) = cx;
 rot(0,1) = cy;
 rot(0,2) = cz;
 rot(1,0) = (-cx*cz*sp - cy*cp) / lxy;
 rot(1,1) = (-cy*cz*sp + cx*cp) / lxy;
 rot(1,2) = lxy * sp;
}

FeaCoOrdSys& copy()
{
 return (new Fea2DRect(this));
}

FeaFullMatrix& get_trans_to(Fea2DRect& dest)
{
 return (dest.trans_from_global() * rot);
}

FeaFullMatrix& trans_to_global()
{
 return (rot.transpose());
}

FeaFullMatrix& trans_from_global()
{
 return (rot);
}

int num_of_axis()
{
 return(2);
}
6.3.3 2D Beam Element With End Hinges

Once the Constitutive Model for the hinges and the 2D Rectangular Coordinate System are defined, the actual 2D Hinged Beam Element can be constructed. Any moment-rotation Constitutive Model may be assigned to the hinges. The beam segment between the hinges is assumed to be linear elastic.

The entity relationship diagram for the 2D Hinged Beam Element is shown in Figure 6.3.3a. The 2D Hinged Beam Element is a subclass of the abstract Element class. For the current implementation, the Initial Element State and Element Load objects are not defined.

![Figure 6.3.3a Entity Relationship Diagram for the 2D Beam Element with End Hinges](image-url)
Since the 2D Hinged Beam Element is a subclass of the Element class, it must implement all the methods of the Element class defined in Table 4.2.2. The table is shown again below as Table 6.3.3a.

<table>
<thead>
<tr>
<th>Method</th>
<th>Arguments</th>
<th>Return</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction</td>
<td>Unique to each Element, but includes instances of Constitutive Models</td>
<td></td>
<td>Creates an instance of a specific type of Element</td>
</tr>
<tr>
<td>getStiff</td>
<td>Stiffness matrix augmented with transformation into known Coord Sys</td>
<td>Provides the current linearized stiffness</td>
<td></td>
</tr>
<tr>
<td>getDamp</td>
<td>Damping matrix augmented with transformation into known Coord Sys</td>
<td>Provides the current linearized Damping matrix</td>
<td></td>
</tr>
<tr>
<td>getMass</td>
<td>Mass matrix augmented with transformation into known Coord Sys</td>
<td>Provides the current linearized Mass matrix</td>
<td></td>
</tr>
<tr>
<td>getResistingForce</td>
<td>Load vector augmented with Coord Sys</td>
<td>Provides the current resisting force, including the initial state and element loads</td>
<td></td>
</tr>
<tr>
<td>updateState</td>
<td></td>
<td></td>
<td>Causes the Element to update its state from the Nodes</td>
</tr>
<tr>
<td>getEventFactor</td>
<td>Event Factor</td>
<td></td>
<td>Returns the current event factor</td>
</tr>
<tr>
<td>initialize</td>
<td>Unique to each type of Element</td>
<td></td>
<td>Announces the presence of an Initial Element State</td>
</tr>
<tr>
<td>commitState</td>
<td></td>
<td></td>
<td>Commits the current state of the Element</td>
</tr>
<tr>
<td>getConnectingDof</td>
<td>list of dof</td>
<td></td>
<td>Returns a list of dof to which the element attaches</td>
</tr>
</tbody>
</table>

Table 6.3.3a Element Interface Definition

To provide these methods, the 2D Hinged Beam Element must be able to interpret its state from the connecting Nodes, communicate this state to its Constitutive Model objects, and be able to report on its state.

The translational and rotational deformations of the Nodes are transmitted via Geometric Vectors. The Geometric Vectors can be interpreted in any Coordinate
For a given Coordinate System defined at the Nodes, shown in Figure 6.3.3b, the deformation Vectors may have three components.

The 2D Hinged Beam Element will interpret the same deformation Vectors in its own set of external element Coordinate Systems shown in Figure 6.3.3c. The translational Coordinate Systems are separate from the rotational ones. Thus, the translational deformation vector is interpreted in a 2D Coordinate System, while the rotational deformation vector is interpreted in 1D Coordinate System. The deformations with respect to the external element Coordinate Systems are placed in the array r.

The internal representation of the deformations is more complex due to the possible nonlinear rotations of the hinges. The internal measures of deformation q are shown in Figure 6.3.3d.
Using an incremental formulation, the element must transform displacements from Δr to Δq. Due to the nonlinearity in the hinges, this transform may vary during the analysis. The first three measures of Δq can be obtained directly from:

$$\begin{align*}
\Delta q_1 &= \Delta r_3 - \left(\Delta r_5 - \Delta r_2 \right) / l \\
\Delta q_2 &= \Delta r_6 + \left(\Delta r_5 - \Delta r_2 \right) / l \\
\Delta q_3 &= \Delta r_4 - \Delta r_i
\end{align*}$$

The fourth and fifth measures of Δq are recovered from:

$$\begin{pmatrix} \Delta q_4 \\ \Delta q_5 \end{pmatrix} = k^{-1} \begin{pmatrix} k_i & \Delta q_1 \\ k_j & \Delta q_2 \end{pmatrix}$$

Where k_i and k_j are the current hinge stiffnesses and k is the 2 by 2 elastic beam stiffness matrix. The change in rotation of the hinges is then defined as:

$$\begin{align*}
\Delta \text{rotation}_i &= \Delta q_4 - \Delta q_1 \\
\Delta \text{rotation}_j &= \Delta q_2 - \Delta q_5
\end{align*}$$

The current linearized stiffness of the 2D Hinged Beam Element is obtained through static condensation as:
\[
\begin{pmatrix}
 (k_i - (k_i^{-1}) k_i^2) & -(k_i^{-1}) k_i k_j & 0 \\
 -(k_i^{-1}) k_i k_j & (k_j - (k_j^{-1}) k_j^2) & 0 \\
 0 & 0 & AE/l
\end{pmatrix}
\]

The change in resisting force is obtained as:

\[\Delta M_i = k_i \Delta \text{rotation}_i\]

\[\Delta M_j = k_j \Delta \text{rotation}_j\]

The interface for the 2D Hinged Beam Element is shown below.

class FeaHingedBeamColumn : public FeaElement {
 FeaNode* nodeI; // connecting node I
 FeaNode* nodeJ; // connecting node J
 Fea1DConstitutiveModel* hingeI; // material
 Fea1DConstitutiveModel* hingeJ; // material
 Fea1DConstitutiveModel* axialMat; // material
 Fea3DRect* mtcs; // 3D translational coord sys for mass
 Fea2DRect* tcs; // translational coordinate system
 Fea1DRect* rcs; // rotational coordinate system
 FeaFullMatrix* t;
 double area; // Xsect area
 double EA; // Xsect area
 double EI; // moment of inertia
 double l; // length of bar
 double massPerL; // mass per unit length
 double ejlI; // I end equivalent joint FeaLoad
 double ejlJ; // J end equivalent joint FeaLoad
 double internalForceI; // +ve Tension
 double internalForceJ; // +ve Tension
 double axialForce;
 double q1Commit;
 double q2Commit;
 double q3Commit;
 double q1Update;
 double q2Update;
 double q3Update;
 double q4Update;
 double q5Update;
 void setT();
public:
 FeaHingedBeamColumn(const char*, double A, double I,
 Fea1DConstitutiveModel&, Fea1DConstitutiveModel&,
 FeaNode&, FeaNode&, FeaGeoPoint&, FeaMaterial&);
 FeaHingedBeamColumn(const char*, double A, double I,
 Fea1DConstitutiveModel&, Fea1DConstitutiveModel&,
 FeaNode&, FeaNode&, FeaGeoPoint&, FeaMaterial&);
There are two constructor methods for the `FeaHingedBeamColumn` class. In the first, a `Point` must be provided that is in the plane of the beam (i.e., the plane in which the element deforms). The second constructor assumes that the Nodes to which the element attaches have coincident 2D translational Coordinate Systems. In this case, the Coordinate Systems at the Nodes define the plane of the beam. Both construction methods are then responsible for initializing the instance variables. The transformation matrix is initialized by invoking the private member method `setT`. The implementation for the constructors is shown below:

```cpp
FeaHingedBeamColumn::FeaHingedBeamColumn(const char* s, double A, double I,
                                         Fea1DConstitutiveModel& nhi, Fea1DConstitutiveModel& nhj,
                                         FeaNode& ni, FeaNode& nj, FeaGeoPoint& point, FeaMaterial& mat) :
  FeaElement(s)
  // constructs an element, orientation given by third point
  {  
    nodeI = ni;  
    nodeJ = nj;  

    // create the 2D coordinate system for the translations  
    tcs = new Fea2DRect(nodeI.getPosition(), nodeJ.getPosition(), point);  

    // create the 3D coordinate system for the mass translations  
    mtcs = new Fea3DRect(nodeI.getPosition(), nodeJ.getPosition(), point);  
  }
```

201
point);

// generate a point for the end of the rotation axis
npi = nodeI.getPosition().get_rep_in(mtcs);
npi(2) += 1.0;
FeaGeoPoint perpPoint(npi, mtcs);

// create the 1D coordinate system for the rotation
rcs = new Fea1DRect(nodeI.getPosition(),perpPoint);

// get length of beam between the two nodes
l = (nodeI.getPosition()).lengthTo(nodeJ.getPosition());

// create the beam properties from the given material
EA = A * mat.youngsModulus();
area = A;
EI = I * mat.youngsModulus();
massPerLength = mat.massDensity()*area;

// create the hinges and axial constitutive models
hingeI = nhi.copy();
hingeJ = nhj.copy();
axialMat = new Fea1DLinearElastic(mat);

// set up the transformation between the 5 internal
// and 3 external dof
// only set up for q4 and q5 from r1 and r2
t00 = t01 = t10 = t11 = 0.0;
setT();

}
if (itrj().getType() == "translation") break;
nodeJcs = itr().getCoOrdSys();

// recreate nodeJ positions using nodeI coordinate system
IRep = nodeI.getPosition().get_rep_in(nodeIcs);
newJRep = nodeJ.getPosition().get_rep_in(nodeIcs);
FeaGeoPoint newJ(newJRep, nodeIcs);
newL = (nodeI.getPosition()).lengthTo(newJ);

// compare real length to the new length to see if nodeJ
// is in the plane of nodeI's coordsys
if (fabs((l-newL)/l) > 1.0e-6)
{
 cout << "Error: Node J is not in the plane of Node I's
 coordinate system\n";
 exit(1);
}

// generate a point outside the beam along the strong
// bending axis
double angle = asin((newJRep(1)-IRep(1))/l);
angle += PI/2.0;
FeaFullVector& newP = *(new FeaFullVector(3));
newP(0) = IRep(0) + cos(angle);
newP(1) = IRep(1) + sin(angle);
FeaGeoPoint point(newP, nodeIcs);

// create the 2D coordinate system for the translations
tcs = new Fea2DRect(nodeI.getPosition(), nodeJ.getPosition(),
 point);

// create the 3D coordinate system for the mass translations
mtcs = new Fea3DRect(nodeI->getPosition(),nodeJ->getPosition(),
 point);

// generate a point for the end of the rotation axis
FeaFullVector& npi = nodeI->getPosition().get_rep_in(*mtcs);
npi(2) += 1.0;
FeaGeoPoint perpPoint(npi, *mtcs);

// create the 1D coordinate system for the rotation
rcs = new Fea1DRect(nodeI->getPosition(),perpPoint);

EI = I * mat.youngsModulus();
massPerLength = mat.massDensity()*area;

// create the hinges and axial constitutive models
hingeI = nhi.copy();
hingeJ = nhj.copy();
axialMat = new Fea1DLinearElastic(mat);

// set up the transformation between the 5 internal
The `getConnectingDof` method is responsible for returning the degrees of freedom the element presumes are available at the Nodes to which it attaches. The method returns the 2D translational and 1D rotational Coordinate Systems at Nodes i and j in terms of a `FeaTransformation` object. The implementation for the method is shown below:

```cpp
FeaTransformation& getConnectingDof()
// returns a description of the dof to which the elements attaches
{
    ktrans = new FeaTransformation(1,4);
    ktrans.addDesc(FeaTransDesc("translation", nodeI, tcs));
    ktrans.addDesc(FeaTransDesc("rotation", nodeI, rcs));
    ktrans.addDesc(FeaTransDesc("translation", nodeJ, tcs));
    ktrans.addDesc(FeaTransDesc("rotation", nodeJ, rcs));

    return *ktrans;
}
```

The `getStiff` method is responsible for providing the current linearized stiffness for the element. The implementation for it is shown below. The stiffness is the 3 by 3 matrix based on the stiffness for \(q_1 \)-\(q_3 \) and is transmitted as an `FeaAugmentedMatrix` object. The stiffness matrix is obtained by forming the full 5 by 5 matrix and condensing out \(q_5 \) and \(q_6 \) as outlined previously. In the actual code, the symbolic inversion of the matrix is hard coded since it is a 2 by 2 matrix. The matrix is then augmented by the element with a matrix that will transform the stiffness into the external element Coordinate Systems shown in Figure 6.3.3c. The coordinate system information is attached to the transformation matrix. This combination is attached to
the base stiffness matrix to produce an augmented matrix which is then returned. The transformation matrix and associated external element Coordinate Systems are shown in Figure 6.3.3d.

\[
\begin{bmatrix}
\frac{-1}{l} & \frac{1}{l} & \frac{-1}{l} & 1 \\
-1 & 1 & 1 & 0 \\
\end{bmatrix}
\]

Figure 6.3.3d Stiffness Transformation Matrix

```cpp
FeaAugmentedMatrix& getStiff()
// returns the current stiffness matrix {
    // setup kii for q4 and q5 (use final k as storage)
    k = FeaFullMatrix(3,3); // allocate final k
    double ki = hingeI.getK(); // get current ki from the hinge
    double kj = hingeJ.getK(); // get current kj from the hinge
    k(0,0) = 4.0*EI/l + ki;
    k(0,1) = 2.0*EI/l;
    k(1,0) = 2.0*EI/l;
    k(1,1) = 4.0*EI/l + kj;

    // invert kii
    double det = k(0,0) * k(1,1) - k(1,0) * k(0,1);
    double dum = k(0,0) / det;
    k(0,0) = k(1,1)/det;
    k(0,1) = -k(0,1)/det;
    k(1,0) = -k(1,0)/det;
    k(1,1) = dum;

    // solve for final k in terms of q1, q2, and q3
    k(0,0) = ki - k(0,0)*ki*ki;
    k(0,1) = -k(0,1)*ki*kj;
    k(1,0) = -k(1,0)*ki*kj;
    k(1,1) = k(1,1);
}
```
The `getMass` method is responsible for reporting the consistent mass matrix for the element. Although the element is two-dimensional, when used within a 3D model, most users of the element would assume 3D translational mass. The rotational mass remains 1D; rotation about an axis perpendicular to the plane of the element. The mass matrix is already in terms of the 3D translational and 1D rotational Coordinate Systems. Therefore, a transformation matrix need not be posted. The `getDamp` method returns the damping matrix for the element. At present, only stiffness based
damping has been implemented. The method is similar to the getStiff method, except that the base matrix is multiplied by the stiffness based damping factor.

The updateState method is responsible for updating the state of the element in accordance with the response values of the connecting Nodes. It must update the state of the hinges and the internal forces. Because the value of the increment in deformation at the Nodes may change from state update to state update, the internal deformation values at the end of the last update are stored in qUpdate(1-5). The update method must bring the values of qUpdate, into line with the current increment at the Nodes. While obtaining the new values for qUpdate the hinges may change stiffness. An event to event scheme is used in the update method to make the internal and external displacement equal. In general terms, the approach is to obtain the increment in displacement of the nodes in terms of the external element Coordinate Systems; convert them to q1, q2, q3; find the difference from the last update; make a copy of the Constitutive Models for the hinges; and determine the new values for q4 and q5 by advancing the temporary hinges from event to event until q1-5 are in agreement. Once the new q values are known, the state of the actual hinges and internal forces are updated in accordance with the new q's. Finally, the new q's are stored for the next state update. The implementation for this updateState method is shown below:

```c
void updateState()
// updates the state of the element according to the displacements
// at the connecting nodes
{
    // save the moments and axial force
    double previousSa = axialMat->getCurrentPlusDeltaS();
    double previousSi = hingeI->getCurrentPlusDeltaS();
    double previousSj = hingeJ->getCurrentPlusDeltaS();

    // get delta displacements at the nodes
```
\[d_1 = \text{nodeI.getIncV(FeaDofType("translation"))}.\text{get_rep_in(tcs)}; \]
\[r_1 = \text{nodeI.getIncV(FeaDofType("rotation"))}.\text{get_rep_in(rcs)}; \]
\[d_2 = \text{nodeJ.getIncV(FeaDofType("translation"))}.\text{get_rep_in(tcs)}; \]
\[r_2 = \text{nodeJ.getIncV(FeaDofType("rotation"))}.\text{get_rep_in(rcs)}; \]

\[
\text{// convert to rotations and axial disp}
\]
\[\text{double t}q_1 = d_1(1)/l + r_1(0) - d_2(1)/l; \]
\[\text{double t}q_2 = d_1(1)/l + r_2(0) - d_2(1)/l; \]
\[\text{double t}q_3 = d_2(0) - d_1(0); \]

\[
\text{// get the increment in q from the last update}
\]
\[\text{double q}1 = tq_1 - q_1\text{Update}; \]
\[\text{double q}2 = tq_2 - q_2\text{Update}; \]

\[
\text{// save q4 and q5 from last update}
\]
\[\text{double t}q_4 = q_4\text{Update}; \]
\[\text{double t}q_5 = q_5\text{Update}; \]

\[
\text{// make copies of the hinges}
\]
\[\text{tmpHingeI = hingeI.copy();} \]
\[\text{tmpHingeJ = hingeJ.copy();} \]

\[
\text{// commit the tmp hinges}
\]
\[\text{tmpHingeI}-\text{commit();} \]
\[\text{tmpHingeJ}-\text{commit();} \]

\[
\text{// set up for the loop}
\]
\[\text{double factor} = 0.0; \]
\[\text{double previousRotI} = 0.0; \]
\[\text{double previousRotJ} = 0.0; \]

\[
\text{// proceed through the displacements by event to event}
\]
\[\text{while (factor < (1.0 - TOLERANCE))} \}
\[\{ \]
\[\text{// recover internal node rotations}
\]
\[\text{double q}4 = t_{00} * q_1 + t_{01} * q_2; \]
\[\text{double q}5 = t_{10} * q_1 + t_{11} * q_2; \]

\[
\text{// add to the tmp values of q4 and q5 from last update}
\]
\[\text{tq}_4 += q_4; \]
\[\text{tq}_5 += q_5; \]

\[
\text{// calculate the change in hinge rotation and axial strain}
\]
\[\text{double deltaRotI} = \text{tq}_4 - \text{tq}_1 - \text{previousRotI}; \]
\[\text{double deltaRotJ} = \text{tq}_2 - \text{tq}_5 - \text{previousRotJ}; \]

\[
\text{// get the event factors for these new increments in rot}
\]
\[\text{double f}i = \text{tmpHingeI->getEventFactorIncV(deltaRotI);} \]
\[\text{double f}j = \text{tmpHingeJ->getEventFactorIncV(deltaRotJ);} \]

\[
\text{// get minimum event factor}
\]
\[\text{factor} = \text{f}i; \]
if (fj < factor) factor = fj;

// scale displacements by the event factor
previousRotI += deltaRotI*factor;
previousRotJ += deltaRotJ*factor;
deltaRotI *= (factor);
deltaRotJ *= (factor);
q1 *= (1.0-factor);
q2 *= (1.0-factor);
tq4 -= q4*(1.0-factor);
tq5 -= q5*(1.0-factor);

// update and commit the temporary hinges
tmpHingeI.setIncV(deltaRotI);
tmpHingeJ.setIncV(deltaRotJ);
tmpHingeI.commit();
tmpHingeJ.commit();

// update the real hinges
hingeI.setIncV(previousRotI);
hingeJ.setIncV(previousRotJ);

// update the transformation
setT();

// calc the inc in axial strain and update the const. model
double deltaAxialStrain = tq3/l;
axialMat.setIncV(deltaAxialStrain);

// calc the increment in internal forces
bFi = hingeI.getCurrentPlusDeltaS() - previousSi;
bFj = hingeJ.getCurrentPlusDeltaS() - previousSj;
bFa = (axialMat.getCurrentPlusDeltaS() - previousSa) * area;

// update the internal forces
internalForceI += bFi;
internalForceJ += bFj;
axialForce += bFa;

// save the displacements for the next iteration
q1Update = tq1;
q2Update = tq2;
q3Update = tq3;
q4Update = tq4;
q5Update = tq5;
}
The `commit` method is responsible for committing the state of the element in accordance with the total current responses at the connecting Nodes. It is important to note that the `commit` method may be called after the `update` method (as is the case for Newton-Raphson iteration for the model), or on its own (as is the case for event to event). In either case, the current linearization of the element is still valid. There is no change in stiffness of the hinges. Therefore, the iteration scheme employed in the `updateState` method is not necessary. The element obtains the current total displacement of the Nodes; converts it in accordance with the external element Coordinate Systems; forms the change in q_1, q_2, and q_3; recovers q_4 and q_5 from the current t matrix; commits the hinge state; and updates the internal force. To determine the change in q values from the last committed state, $q(1-5)_{commit}$ are stored and updated. The implementation for the `commit` method is shown below.

```c
void commitState()
{
    // get total displacements at the nodes
    d1 = nodeI.getTotalV("translation").get_rep_in(tcs);
    r1 = nodeI.getTotalV("rotation").get_rep_in(rcs);
    d2 = nodeJ.getTotalV("translation").get_rep_in(tcs);
    r2 = nodeJ.getTotalV("rotation").get_rep_in(rcs);

    // convert to rotations and axial disp
    double tq1 = d1(1)/l + r1(0) - d2(1)/l;
    double tq2 = d1(1)/l + r2(0) - d2(1)/l;
    double tq3 = d2(0) - d1(0);

    // get inc in rotations since last commit or update
    double q1 = tq1 - q1Commit - q1Update;
    double q2 = tq2 - q2Commit - q2Update;

    // get delta in disp (from last commit)
    double dq1 = tq1 - q1Commit;
    double dq2 = tq2 - q2Commit;
    double dq3 = tq3 - q3Commit;

    // save the total disp for possible next commit
    q1Commit = tq1;
    q2Commit = tq2;
    q3Commit = tq3;
}
```
The getResistingForce method is responsible for providing the current resisting force the element exerts on the connecting Nodes. The values of the internal forces are
maintained by the `updateState` and `commit` methods. The `getResistingForce` method must communicate these values as an Augmented Vector object. The Augmented Vector holds the base force vector, a transformation matrix, and the Coordinate Systems in which the resulting forces are represented. The transformation matrix and Coordinate Systems are the same as those in the `getStiff` method. The base vector \(ld \) is given as:

\[
ld = \begin{bmatrix}
\text{intForceI} \\
-\text{intForceJ} \\
-\text{axialForce}
\end{bmatrix}
\]

The implementation for the `getResistingForce` method is shown below:

```cpp
FeaAugmentedVector& getResistingForce()
// return the resisting force of the element as an augmented vector
{
  // create the internal force vector
  ld = new FeaFullVector(3);
  ld(0) = internalForceI;
  ld(1) = -internalForceJ;
  ld(2) = -axialForce;

  // set up the transformation for the augmented vector
  ktrans = new FeaTransformation(1,4);

  // set up the transformation and desc for nodeI translation
  t1 = new FeaFullMatrix(3,2);
  t1(2,0) = -1.0;
  t1(0,1) = 1.0/l;
  t1(1,1) = 1.0/l;
  ktrans.addDesc(FeaTransDesc("translation", nodeI, tcs), t1);

  // set up the transformation and desc for nodeI rotation
  t2 = new FeaFullMatrix(3,1);
  t2(0,0) = 1.0;
  ktrans.addDesc(FeaTransDesc("rotation", nodeI, rcs), t2);

  // set up the transformation and desc for nodeJ translation
  t3 = new FeaFullMatrix(3,2);
  t3(2,0) = 1.0;
```

212
The `getEventFactor` method is responsible for returning the event factor for the current increment in response at the connecting Nodes. The method does not change the state of the element in the process. The event factor returned is the smaller of the event factors for the two hinges. The current increment in displacement is obtained in terms of the external element Coordinate Systems; this is converted to \(q_1, q_2, \) and \(q_3 \) values; \(q_4 \) and \(q_5 \) are recovered using the current \(t \) matrix; the increment in rotation of the hinges is found; the hinges are asked for their event factor for the increments in rotation; and, finally, the smaller of the two values is returned. The instance variables of the element are not disturbed. The state of the element is unaffected as long as the Constitutive Model objects for the hinges do not change their state when asked to provide their event factor.

double getEventFactor()
// returns the minimum event factor based on the state of the
// nodes
{
 // get delta displacements at the nodes
 d1 = nodeI.getIncV(FeaDofType("translation")).get_rep_in(tcs);
 r1 = nodeI.getIncV(FeaDofType("rotation")).get_rep_in(rcs);
 d2 = nodeJ.getIncV(FeaDofType("translation")).get_rep_in(tcs);
 r2 = nodeJ.getIncV(FeaDofType("rotation")).get_rep_in(rcs);

 // convert to rotations and axial disp
 q1 = d1(1)/l + r1(0) - d2(1)/l;
 q2 = d1(1)/l + r2(0) - d2(1)/l;
 q3 = d2(0) - d1(0);
// recover internal node rotations
q4 = t00 * q1 + t01 * q2;
q5 = t10 * q1 + t11 * q2;

// calculate the change in hinge rotation and axial strain
deltaRotI = q4 - q1;
deltaRotJ = q2 - q5;
deltaAxialStrain = q3/l;

// get the event factors from the constitutive models
fi = hingeI->getEventFactorIncV(deltaRotI);
fj = hingeJ->getEventFactorIncV(deltaRotJ);
fa = axialMat->getEventFactorIncV(deltaAxialStrain);

// get the minimum event factor and return it
factor = 1.0;
if (fi < factor) factor = fi;
if (fj < factor) factor = fj;
if (fa < factor) factor = fa;
return factor;

The `setT` method is used by the constructors, `updateState`, `commitState` methods. It is responsible for creating the `trans` instance variable, which is used to recover the internal rotations \(\Delta q_i \) and \(\Delta q_j \) from the external \(\Delta q_i \) and \(\Delta q_j \). It is defined from the following relationship shown previously in this section:

\[
\begin{bmatrix}
\Delta q_i \\
\Delta q_j
\end{bmatrix} = [k]^{-1}
\begin{bmatrix}
k_i \Delta q_i \\
k_j \Delta q_j
\end{bmatrix}
\]

The implementation for the `setT` method is shown below:

```cpp
void setT()
// set up the transformation between the 5 internal and
// the 3 external dof
// only set up for q4 and q5 from r1 and r2
{
// get the current hinge stiffnesses
ki = hingeI->getK();
kj = hingeJ->getK();
```
6.4 Building a Model

This section describes the process involved in building a Model through the use of the constructors for the component classes of the Model. Although it is possible to use the constructors directly in this manner to build the Model, this is not the intention. A preprocessor language could translate modeling commands into constructors for the classes. This language is outside of the scope of the study. The sample model is shown below.
The first task is the creation of the FeaModel object that will hold the components of the Model. It is created with the following text, which names the Model as "TrussModel":

```cpp
// Model
FeaModel sub1("TrussModel");
```

The four Nodes for the Model are defined next. To aid in this, a vector of length 3 is defined. Each Node is defined in four steps: first the ordinates of the position of the Node are entered into the vector; the node is then defined by giving it a name and defining the point in space it occupies (using the vector); 3 degrees of freedom are added to the Node using the addDof method with a name for the degrees of freedom and a Coordinate System; finally, the Node is added to the Model using the addDofGroup method of the Model. This is repeated for all four Nodes.

```cpp
// Nodes
FeaFullVector tmpv(3);

tmpv(0) = 0.0; tmpv(1) = 0.0; tmpv(2) = 0.0;
FeaNode node1("nodeOne", FeaGeoPoint(tmpv, Fea3DRect()));
node1.addDof("translation", Fea3DRect());
sub1.addDofGroup(node1);
```
Constraints are added to the model by defining an equation of constraint. In this example, the X and Z displacements of Node 1, and the X, Y, and Z displacements of Nodes 3 and 4, are treated as constraints. The Y displacement of Node 1 is treated as a Boundary Condition with Prescribed Values. For these simple constraints in this example, each equation involves only one degree of freedom component. The component is described by a FeaDofCompDesc object, which is formed by defining the type of movement, the Node, and the coordinate axis number for the direction. The equation is represented by a dictionary of pairs of FeaDofCompDesc objects and the associated value for its coefficient in the equation. The values in this example are set to unity; any value will do. Each equation of constraint is then added to the model using the addConstraint method.

```csharp
// Constraints
dictionary<FeaDofCompDesc&, double> c1, ... c8;

c1[FeaDofCompDesc("translation", node1, 1)] = 1.0;
sub1.addConstraint(FeaConstraint(c1));
c2[FeaDofCompDesc("translation", node1, 3)] = 1.0;
sub1.addConstraint(FeaConstraint(c2));

c3[FeaDofCompDesc("translation", node3, 1)] = 1.0;
sub1.addConstraint(FeaConstraint(c3));
c4[FeaDofCompDesc("translation", node3, 2)] = 1.0;
```
Boundary conditions are added to the model by defining the FeaDofCompDesc for the degree of freedom component as above. The FeaDofCompDesc object is added to the Model using the addPrescBC method.

```java
// Boundary Condition
FeaDofCompDesc bc("translation", node1, 2);
sub1.addPrescBC(bc);
```

The next step is to define the Elements in the problem. In order to do this, Constitutive Models for the Elements must be defined. In this example, a linear elastic 1D stress/strain Constitutive Model and a bi-linear elastic 1D stress/strain Constitutive Model are required. They are both defined by indicating the material, A36 Steel, with which the Constitutive Models will be calibrated.

```java
// Constitutive Model
Fea1DStressStrainLinearElastic mat(FeaA36Steel());
Fea1DStressStrainBiLinearElastic matB(FeaA36Steel());
```

The three Truss Bar Elements are defined by giving them a name, cross sectional area, the two Nodes to which they connect, and a Constitutive Model. The Elements are added to the model using the addElement method.

```java
// Elements
FeaTrussBar ell("element1", 1.0e3, node1, node2, matB);
```
The final portion of the model definition is to define the Loads which will act upon the Model. First a Load Case is defined by providing a name. The components of the Load Case will then be built and added.

```cpp
// Load Case
FeaLoadCase lc1("loadCase1");
```

A Time Function must be provided for the time varying loads. Data points are added to the function using the `addTimeAndValue` method with the time and function values as the arguments.

```cpp
// Time Function
FeaTimeFunction tf;
    tf.addTimeAndValue(0.00, 1.0);
    tf.addTimeAndValue(0.02, 1.0);
```

Prescribed Displacement values relating to the Boundary Conditions in the Model are defined by a `FeaDofCompDesc` object, the base displacement value, and a time function. The Prescribed Displacement is added to the Load Case using the `addPresDisp` method.

```cpp
// Pres Disp
FeaPresDisp node1pd(bc, 0.0, tf);
    lc1.addPresDisp(node1pd);
```
Nodal loads are defined by the Node to which they apply, the type of degree of freedom, a vector for the load, and a time function. The vector for the load is defined by a FeaGeoVector object which is constructed from the ordinates and the Coordinate System in which the ordinates are defined. The Nodal Loads are added to the Load Case using the addLoad method.

```cpp
// Node Load
FeaFullVector tmpv2(3);
tmpv2(0) = 10.0;
FeaGeoVector vec(tmpv2, Fea3DRect());
FeaVectorLoad vl(node2, "translation", vec, tf);
lc1.addLoad(vl);
```

Finally, the Load Case itself is added to the model using the addLoadCase method.

```cpp
sub1.addLoadCase(lc1);
```

6.5 Using the Finite Element Program

This section describes the use of several of the analysis types implemented in the finite element program: linear static analysis; nonlinear static event to event analysis; nonlinear static analysis with Newton-Raphson iteration; and nonlinear dynamic analysis with Newton-Raphson iteration. At present, the analysis is directed by adding C++ code directly to the program. This is obviously not a permanent solution. When an input language for the program is defined, it will include a means to direct the analysis. As will be seen, the amount of code that is required to direct the analysis is only a few lines. Also, the code for the various analysis types differs only slightly.
6.5.1 Linear Static Analysis

To demonstrate the use of the linear static analysis, the FeaLinearStaticAnalysis class is applied to the frame shown in Figure 6.5.1. The frame is from the Holiday Inn building in Van Nuys California. It is a seven-story reinforced concrete structure which experienced significant distress during the Northridge earthquake in 1994. The structure properties are detailed in the literature [23].
The planar model for an exterior frame consists of 72 nodes and 119 elements, and represents a typical real world analysis problem. The nodes each have two translational, and one rotational degree of freedom, for a total of 216 degrees of freedom. The elements are modeled as beam-columns with elastic-plastic rotational hinges at each end based on the properties of the reinforced concrete cross section. The load applied to the structure is a triangularly distributed, lateral load based on the structure mass. This type of loading is typically used for a nonlinear push-over analysis. In this case, only a linear structure response is considered, but the nonlinear response is considered in the next section.

The actual code for the linear analysis is shown below:

```java
FeaLinearStaticAnalysis analysis(model);
analysis.init("loadCase1");
analysis.analyze();
outputNodesAndElements();
```

The analysis object is constructed by specifying the model to be analyzed. The analysis is then initialized with the load case, and the analysis is performed. The state of the Nodes and Elements is printed for each step using the method `outputNodesAndElements`, which is defined along with the Model.

6.5.2 Nonlinear Static Analysis

To demonstrate the use of the nonlinear static analysis classes, the sample problem of the exterior frame from the Holiday Inn, Van Nuys building from the previous section is reused. To perform the analysis, both an event to event and a Newton-Raphson
The code for the event to event analysis is:

```cpp
FeaEventToEventStaticAnalysis analysis(model);
analysis.init("loadCase1");
for ( double lsf = 0.0; lsf < 1.0; lsf += 0.005)
{
    analysis.analyze(lsf);
    cout << "Load Step Factor = " << lsf << "\n";
    outputNodesAndElement();
}
```

The analysis object is constructed by specifying the model to be analyzed. The analysis is then initialized with the load case. Although the load is static, a time function is defined for the loads and used to represent the load step factor. The function specifies a loading of 1.0 at a step factor of 1.0. A loop is set up in which the value of the load step factor is incremented by 0.005. Inside the loop, the analysis is directed by the `analyze` method with the load case and the current value of the load step factor given as the arguments. The state of the Nodes and Elements is printed for each step using the method `outputNodesAndElements`, which is defined along with the Model.

The code for the Newton-Raphson iteration scheme is identical to that of the event to event type, but the analysis class selected is `FeaNRStaticAnalysis` instead of `FeaEventToEventStaticAnalysis`. The code that directs the nonlinear static analysis with Newton-Raphson iteration is:

```cpp
FeaNRStaticAnalysis analysis(model);
analysis.init("loadCase1");
```
for (double lsf = 0.0; lsf < 1.0; lsf += 0.005) {
 analysis.analyze(lsf);
 cout << "Load Step Factor = " << lsf << "\n";
 outputNodesAndElement();
}

The resulting top floor lateral displacement is shown in Figure 6.5.2a.

![Figure 6.5.2a Top Floor Displacement](image)

The calculated moments in the exterior ground floor column are plotted in Figure 6.5.2b.
6.5.3 Nonlinear Dynamic Analysis

As a demonstration of dynamic analysis, the FeaNRDynamicAnalysis class is used to perform a nonlinear analysis, using Newton-Raphson iteration on the following example:

Column Data:

\[E = 29,000 \text{ ksi} \]
\[A = 324 \text{ in}^2 \]
\[I = 1593.1 \text{ in}^4 \]

\[M_{p} = 2400 \text{ k in} \]

\[\text{nodal mass} = 8.127 \text{ kip s}^2 \text{ in}^{-1} \]

\[P = 60 \text{ kips} \]

\[h = 120 \]

\[l = 180 \]

Figure 6.5.3a Sample Problem
The structure is given Rayleigh damping ratios of $\beta_k = 0.0056$ and $\beta_m = 0.4$, to provide for 5% damping. The loading is constant. The beam is assumed to be near rigid. The right side column is linear, the left side contains elastic-perfectly-plastic hinges that yield at $M_p = 2400$ kip-in.

For comparison, the structure is analyzed for both the nonlinear case and the linear case (M_p is raised above the demand moment). The code directing the analysis is shown below:

```cpp
FeaNRDynamicAnalysis analysis(model, 0.0056, 0.4);
analysis.init("loadCase1");
for ( double time = 0.1; time <= 10.01; time += 0.1)
{
    analysis.analyze(time);
    cout << "\nTime = " << time << ' ';
    node1.print();
    node2.print();
    node3.print();
    el1.print();
    el2.print();
    el3.print();
}
```

The analysis object is constructed by specifying the model and the two damping ratios. The analysis is then initialized with the load case, and the starting time of zero. A loop is set up in which the value of time is incremented by 0.1s. Inside the loop, the analysis is directed by the `analyze` method, with the load case and the current value of time given as the arguments. The state of the nodes and elements is printed for each step.

The resulting floor displacement and column moments are plotted in Figures 6.5.3a and 6.5.3b, respectively. In Figure 6.5.3b, the column moments for the linear case are
identical. In the nonlinear case, M_{left} refers to the moment at the base of the left-hand column, and M_{right} refers to the moment of the right-hand column.

![Top Floor Displacement](figure653b.png)

Figure 6.5.3b Top Floor Displacement

![Column Moments](figure653c.png)

Figure 6.5.3c Column Moments
As is expected for the linear case, the displacements oscillate (Figure 6.5.3b), eventually settling on the static displacement as the structure damping eliminates the motion. For the nonlinear case, the plastic moment capacity for the left column is exceeded. Therefore, the displacements are higher. The final displacement is also higher than for the linear case, due to the plastic rotation of the hinge.

The left and right column moments are identical (Figure 6.5.3c) for the linear case. As the damping takes over and the oscillations stop, the moments settle to the static values. For the nonlinear case, the moment in the left column, M_{left}, is capped at the plastic moment capacity.
7. Conclusions and Future Work

7.1 Conclusions

A new object-oriented design for a finite element program has been presented. The design was implemented in the C++ programming language. The program is flexible, extendible, and easily modified for a variety of finite element analysis procedures. The problems inherent in existing procedural based finite element programs are eliminated by design. To modify or extend the program, the required knowledge of the components is restricted to the public interfaces of the classes. The reuse of code is promoted by the use of inheritance. The effect of a change to the data structures is limited to the class that owns the data; there is no ripple effect through the program. Dependencies between components of the design are explicitly defined and are easily determined from the public interfaces of the classes. The integrity of the program's data structures is enforced by the encapsulation features of the implementation language.
7.1.1 Architecture

The principal feature of the software architecture is the Map object. The Map isolates the degree of freedom based information in the Model from the governing equation information in the Analysis. It is this isolation that limits the degree of knowledge required to work on a component of the system, and provides the flexibility in applications. As a result of the Map, writers of Analysis objects do not need details of the Model and can focus on the numerical algorithms. Also, elements can be formulated with reference to any convenient coordinate system; the Map handles the transformations. Finally, the orientation of the degrees of freedom can vary. The Map makes no assumptions as to the coordinate systems used at the nodes.

The architecture includes three Handlers, each designed to perform tasks that are common to most analysis methods. This greatly reduces the workload of the Analysis object authors. The Handlers are: the Constraint Handler, which processes the constraints; the Reorder Handler, which reorders the equations of equilibrium for efficiency; and the Matrix Handler, which constructs the matrices and vectors used by the Analysis to hold the system properties. The Handlers not only isolate their tasks from the rest of the system, they encourage the reuse of significant amounts of code. Writers of Analysis objects simply choose from the existing set of Handlers or add a new Handler to the library for all to use.

The Constraint Handler permits the inclusion of the multi-point constraints. The manner in which the constraints are to be processed (by transformations, penalty
functions, Lagrangian multipliers, etc.) can be chosen by the Analysis object. This gives the Analysis writer the flexibility to choose the most appropriate type.

Since the constraints are applied before the renumbering scheme is invoked, the Reorder object can optimize the equation of equilibrium numbering including the effects of constraints. The Reorder object is written for use with a specific type of Constraint Handler. Thus, it is sensitive to the ordering requirements unique to the method of constraint processing.

A Matrix Handler is required for each type of matrix used by an Analysis object. The selection of a type of Matrix Handler is the only manner in which the Analysis object indicates the type of matrix it will use for the system properties.

The enforcement of the semantics of update, commit, and event factor throughout the system provides a uniform interface for the Analysis writer. An update describes a new increment from the last committed state of the Model. The combination of the last committed state and the current increment describes the current total state. The Map updates the state of the Model according to the responses the Analysis provides. All subsequent requests for system properties from the Map will be according to the current total state. A commit implies that the total state becomes the new committed state, and the increment in state is set to zero. An Analysis may iterate through many total states, but commits only those that are on the desired solution path. An event factor is the proportion of the increment in state a component of the Model can accommodate without violating the assumptions of its linearization.
In contrast with most finite element analysis programs, element loads are computed in the resisting force calculation and not treated as equivalent nodal loads. This is an advantage in nonlinear analysis, as the distribution of the element loads to the nodes may change as the element experiences nonlinear behavior. Provision for the traditional approach is also provided.

7.1.2 Ease of Modification and Extendibility

The program is easily modified. The ease of modification is due to the object-oriented principals of abstraction, encapsulation, inheritance, and polymorphism. The essential properties of an object form the abstraction for the class. The abstraction is enforced by the implementation language through the encapsulation of the private data of the object and the private implementation of the publicly available services the class provides to the system. The class alone has access to its specific implementation of the public services and its private data. Classes are related by an inheritance hierarchy. A subclass inherits the public appearance of the superclass. The classes are polymorphic; any subclass can be used in the place of a superclass.

Since the instance variables for an object are encapsulated in the class definition, they can be freely modified without affecting other objects. In both the initial development and subsequent refinements of a class, the programmer may change the class's data. The private implementation of the public methods can be modified without any external effect. The portion of the implementation that is fixed are the method names, arguments, and return data types in the public interfaces presented in the Appendix.
Polymorphism eases program modification. The type of matrix used for the system property matrices in the Analysis objects is modified by simply changing the definition of the type of Matrix Handler used. Also, the type of constitutive model used in an element is modified by simply specifying the new type in the creation of the element. The element's code is unchanged.

Several classes were added to the basic system as a demonstration of the extendibility of the program. These classes were: a two-dimensional beam element with hinges at the ends; a two-dimensional rectangular coordinate system; a moment-rotation elastic perfectly plastic constitutive model; a super-element/substructure class using the element interface; and several analysis classes including a nonlinear dynamic solution scheme using Newton-Raphson iteration. The objects were easily incorporated into the system. Of particular interest is that these extensions included both new code using the old, as is the case of a new Analysis object using the methods of the Map, and the old code using the new, such as the Map object using the new two-dimensional rectangular coordinate system to transform the system property objects. In both cases the existing code remains unchanged.

7.2 Future Work

The future work envisioned for the finite element analysis program is broken down into the following tasks:

1. **Numerical Object Library**: A library of numerical objects must be selected. For the sake of furthering research, it is desirable to choose one that is publicly
available. A likely candidate is LAPACK++ [13]. Regardless of the choice, an interface between the library and the finite element program will have to be written to minimize the dependency on the specific library. For each matrix type used by the Analysis, a Matrix Handler object that creates instances of the matrix must be written. Also, an assemble method must be included. In addition to the typical matrices used in finite element analysis (regular, symmetric, diagonal, symmetric banded, and symmetric profile), a key component of the numerical library will be the block matrix object. This matrix type is generally not included in numerical libraries and will have to be added. The blocks will consist of matrix types provided by the library. The block matrix object must take advantage of zero, and identity matrix blocks in both the data storage and multiply methods. For efficiency, the two crucial methods for the block matrix object are: the multiply method for two block matrices, and a triple product method for $B^T A B$, where B is a block matrix and A is a regular matrix (likely symmetric).

2. **Container Class Library:** The choice of container class library should be reviewed. The ANSI/ISO C++ Standard Committee has voted to make the Standard Template Library (STL) [36] part of the standard C++ library. The STL contains the necessary data structures, and will be included in the next revision to the finite element program.

3. **Extensions:** Constraint Handlers and Analysis objects using the method of Lagrangian multipliers and penalty functions to process the constraints are needed. A typical Reorder Handler using a reverse Cuthill-McKee [12] algorithm should be developed. Extension of the geometric objects to include higher order tensors may prove useful to some authors of Element objects.
4. **Input and Output:** A preprocessor language is required that will translate modeling commands into constructors for the classes. A post-processor for the output is also required.

5. **Implementation Language:** The choice of C++ as an implementation language should be reviewed. Although it is by far the most popular object-oriented language available, it is not necessarily the best. The syntax is awkward, the memory management scheme places too much emphasis on the programmer, and the dynamic binding of methods is restrictive.
References

7. Chen W. F.; Sotelino E. D.; White D. W., High Performance Computing In Civil Engineering Applications [West Lafayette, Ind. School Of Engineering, Purdue University, 1990].

34. Scholz S. P., Elements of an Object-Oriented FEM++ Program in C++, Computers

35. Sotelino E. D.; White D. W.; Chen W. F., Domain-Specific Object-Oriented
 Environment For Parallel Computing, Report: Ce-Str-92-41, School Of Civil
 Engineering, Purdue Univ., West Lafayette, Indiana, [1992]P 30, (Presented At
 The 2nd International Conference On Discrete Element Methods, Mar. 18,
 1993.)

38. Yu G.; Adeli H., Object-Oriented Finite Element Analysis Using EER Model.

39. Zahlten W.; Demmert P.; Kratzig W. B., An Object-Oriented Approach to
 Physically Nonlinear Problems in Computational Mechanics. Computing in
 Civil and Building Engineering, Rotterdam, 1995.

40. Zeglinski G. W.; Han R. P. S.; Aitchison P., Object-Oriented Matrix Classes For
 Use In A Finite Element Code Using C++. International Journal For Numerical

41. Zhang H.; White D. W.; Chen W. F., A Library For Object-Oriented Programming
 In C. [West Lafayette, Ind. : School Of Civil Engineering, Purdue University,
 1990].

42. Zhang H.; White D. W.; Chen W. F., The SESDE Object Library Manual. [West
 Lafayette, Ind. : School Of Civil Engineering, Purdue University, 1990].

43. Zhang H.; White D.W.; Chen W. F., An Object-Oriented Matrix Manipulation
 Library [West Lafayette, Ind. : School Of Civil Engineering, Purdue
 University, 1990].

45. Zimmermann T.; Duboispeletin Y.; Bomme P., Object-Oriented Finite Element
Appendix: C++ Class Interfaces

class Fea1DConstitutiveModel : public FeaConstitutiveModel {
// abstract 1D stress-strain constitutive model
public:
 // provide a copy of the object
 virtual Fea1DConstitutiveModel& copy() = 0;

 // state operations
 virtual void setIncV(double incV) = 0;
 virtual void setTotalV(double totalV) = 0;
 virtual void setInitialV(double initialV) = 0;
 virtual void commit() = 0;
 virtual double getEventFactorIncV(double incV) = 0;
 virtual double getEventFactorTotalV(double totalV) = 0;

 // provide current properties
 virtual double getCurrentCommittedS() = 0;
 virtual double getCurrentPlusDeltaS() = 0;
 virtual double getK() = 0;
};

class FeaDBiLinearElastic : public Fea1DConstitutiveModel{
// 1D stress-strain bi-linear elastic constitutive model
public:
 // constructor
 FeaDBiLinearElastic(FeaMaterial& material);

 // provide a copy of the object
virtual Fea1DConstitutiveModel& copy() = 0;

// state operations
virtual void setIncV(double incV) = 0;
virtual void setTotalV(double totalV) = 0;
virtual void setInitialV(double initialV) = 0;
virtual void commit() = 0;
virtual double getEventFactorIncV(double incV) = 0;
virtual double getEventFactorTotalV(double totalV) = 0;

// provide current properties
virtual double getCurrentCommittedS() = 0;
virtual double getCurrentPlusDeltaS() = 0;
virtual double getK() = 0;
};

class Fea1DLinearElastic : public Fea1DConstitutiveModel{
// 1D stress-strain linear elastic constitutive model
public:
 // constructor
 Fea1DLinearElastic(FeaMaterial& material);

 // provide a copy of the object
 virtual Fea1DConstitutiveModel& copy() = 0;

 // state operations
 virtual void setIncV(double incV) = 0;
 virtual void setTotalV(double totalV) = 0;
 virtual void setInitialV(double initialV) = 0;
 virtual void commit() = 0;
 virtual double getEventFactorIncV(double incV) = 0;
 virtual double getEventFactorTotalV(double totalV) = 0;

 // provide current properties
 virtual double getCurrentCommittedS() = 0;
 virtual double getCurrentPlusDeltaS() = 0;
 virtual double getK() = 0;
};

class Fea1DMRotBiLinearElastic : public Fea1DConstitutiveModel{
// 1D moment-rotation bi-linear elastic constitutive model
public:
 // constructor
 Fea1DMRotBiLinearElastic(double stiffness1, double stiffness2, double Myield);

 // provide a copy of the object
 virtual Fea1DConstitutiveModel& copy() = 0;

 // state operations
virtual void setIncV(double incV) = 0;
virtual void setTotalV(double totalV) = 0;
virtual void setInitialV(double initialV) = 0;
virtual void commit() = 0;
virtual double getEventFactorIncV(double incV) = 0;
virtual double getEventFactorTotalV(double totalV) = 0;

// provide current properties
virtual double getCurrentCommittedS() = 0;
virtual double getCurrentPlusDeltaS() = 0;
virtual double getK() = 0;
};

class Fea1DMRotElasticPlastic : public Fea1DConstitutiveModel {
// 1D moment-rotation elastic perfectly plastic constitutive model
public:
 // constructor
 Fea1DMRotElasticPlastic(double stiffness1, double Myield);

 // provide a copy of the object
 virtual Fea1DConstitutiveModel& copy() = 0;

 // state operations
 virtual void setIncV(double incV) = 0;
 virtual void setTotalV(double totalV) = 0;
 virtual void setInitialV(double initialV) = 0;
 virtual void commit() = 0;
 virtual double getEventFactorIncV(double incV) = 0;
 virtual double getEventFactorTotalV(double totalV) = 0;

 // provide current properties
 virtual double getCurrentCommittedS() = 0;
 virtual double getCurrentPlusDeltaS() = 0;
 virtual double getK() = 0;
};

class Fea1DMRotLinearElastic : public Fea1DConstitutiveModel {
// 1D moment-rotation linear elastic constitutive model
public:
 // constructor
 Fea1DMRotLinearElastic(double stiffness);

 // provide a copy of the object
 virtual Fea1DConstitutiveModel& copy() = 0;

 // state operations
 virtual void setIncV(double incV) = 0;
 virtual void setTotalV(double totalV) = 0;
 virtual void setInitialV(double initialV) = 0;
 virtual void commit() = 0;
virtual double getEventFactorIncV(double incV) = 0;
virtual double getEventFactorTotalV(double totalV) = 0;

// provide current properties
virtual double getCurrentCommittedS() = 0;
virtual double getCurrentPlusDeltaS() = 0;
virtual double getK() = 0;

};

class Fea1DRect : public FeaCoOrdSys {
 // 1D rectangular coordinate system
 public:
 // constructors
 Fea1DRect();
 Fea1DRect(FeaFullVector& rotation);
 Fea1DRect(FeaGeoPoint& p1, FeaGeoPoint& p2);

 // transformations to and from global 3D rect
 FeaFullMatrix& get_trans_to(Fea1DRect& other);
 FeaFullMatrix& trans_to_global();
 FeaFullMatrix& trans_from_global();

 // number of axis in coordinate system
 int num_of_axis();

 // make a copy
 FeaCoOrdSys& copy();
 };

class Fea2DRect : public FeaCoOrdSys {
 // 2D rectangular coordinate system
 public:
 // constructors
 Fea2DRect();
 Fea2DRect(FeaFullVector& rotation);
 Fea2DRect(FeaGeoPoint& p1, FeaGeoPoint& p2, FeaGeoPoint& p3);

 // transformations to and from global 3D rect
 FeaFullMatrix& get_trans_to(Fea2DRect& other);
 FeaFullMatrix& trans_to_global();
 FeaFullMatrix& trans_from_global();

 // number of axis in coordinate system
 int num_of_axis();

 // make a copy
 FeaCoOrdSys& copy();
 };

243
class Fea3DRect : public FeaCoOrdSys {
 // 3D rectangular coordinate system
 public:
 // constructors
 Fea3DRect();
 Fea3DRect(FeaFullVector& rotations);
 Fea3DRect(FeaGeoPoint& p1, FeaGeoPoint& p2, FeaGeoPoint& p3);

 // transformations to and from global 3D rect
 FeaFullMatrix& get_trans_to(Fea3DRect& other);
 FeaFullMatrix& trans_to_global();
 FeaFullMatrix& trans_from_global();

 // number of axis in coordinate system
 int num_of_axis();

 // make a copy
 FeaCoOrdSys& copy();
};

class FeaA36Steel : public FeaMaterial {
 // A36 steel material
 public:
 // kip, inch, second, Farenheit
 double youngsModulus() { return 2.9e4; }
 double coefOfThermalExp() { return 6.5e-6; }
 double weightDensity() { return 3.403e-3; }
 double massDensity() { return 8.806e-6; }
 double yieldStress() { return 36.0; }
 double postYieldModulus() { return 1.0e-3; }
};

class FeaAugmentedMatrix{
 // matrix augmented with transformations
 public:
 // constructor
 FeaAugmentedMatrix(FeaFullMatrix& mat, FeaTransformation& trans);

 // add a FeaTransformation
 void addT(FeaTransformation& trans);

 // return a pointer to the last trans
 FeaTransformation& getLastT();

 // return the transformed K
 FeaFullMatrix& getTransformedK();

 // return the id vector for the transformed K
 int* getId();
};
class FeaAugmentedVector
// vector augmented with transformations
public:
 // constructor
 FeaAugmentedVector(FeaFullVector& vec, FeaTransformation& trans);

 // add a FeaTransformation
 void addT(FeaTransformation& trans);

 // return a pointer to the last trans
 FeaTransformation& getLastT();

 // return the transformed FeaLoad
 FeaFullVector& getTransformedLoad();

 // return the id vector for the transformed Vector
 int* getId();
};

class FeaBlockMatrix : public FeaMatrix {
 // block matrix
 public:
 // constructor
 // initialize with number of row and column blocks
 FeaBlockMatrix(int numRowBl, int numColBl);

 // print out the matrix
 void print();

 // add a block with top left hand absolute corner
 void addBlock(FeaFullMatrix& mat, int row, int col);

 // operations
 double& operator()(int, int);
 FeaMatrix& operator*(FeaMatrix& other);
 FeaBlockMatrix& operator*(FeaBlockMatrix& other);
 FeaBlockMatrix& operator*(FeaFullMatrix& other);
 FeaFullVector& operator*(FeaFullVector& other);
 FeaBlockMatrix& operator+=(FeaMatrix& other);
 FeaBlockMatrix& getSubMatrix(int, int, int, int);

 // provide a transpose of the matrix
 FeaBlockMatrix& transpose();

 // top left absolute position and row and column length
 FeaFullMatrix& getBlock00();
 FeaFullMatrix& getBlock(int, int);

 // assemble matrix and given id's
 int* getId();
void assemble(FeaFullMatrix& mat, int* id);

// LU decomposition and forward and backward substitution
void luDecomp();
void luForBack(FeaFullVector&);

// zero out the entries of the matrix
void zero();

// access to size of matrix
int nRow();
int nCol();
int nRowBlock();
int nColBlock();

// make a copy of the matrix
FeaBlockMatrix& copy();

// friends
friend class FeaFullVector;
friend class FeaFullMatrix;
friend class FeaColCompMatrix;
};

class FeaColCompMatrix : public FeaMatrix {
// symmetrix column compacted matrix
public:
 // constructor
 FeaColCompMatrix(int numRows, int* colHeights);

 // print out the matrix
 void print();

 // operations
 double& operator()(int row, int column);
 FeaMatrix& operator*(FeaMatrix& other);
 FeaFullMatrix& operator*(FeaFullMatrix& other);
 FeaFullVector& operator*(FeaFullVector& other);
 FeaColCompMatrix& operator+=(FeaMatrix& other);

 // symmetric, makes a copy
 FeaColCompMatrix& transpose();

 // top left absolute position and row and column length
 FeaFullMatrix& getSubMatrix(int, int, int, int);

 // assemble matrix and given id's
 void assemble(FeaMatrix& mat, int* id);

 // LU decomposition and forward and backward substitution
 void luDecomp();
};
void luForBack(FeaFullVector&);

// zero out the entries of the matrix
void zero();

// get the size
int nRow();
int nCol();

// make a copy of the matrix
FeaColCompMatrix& copy();

// friends
friend class FeaFullVector;
friend class FeaFullMatrix;
friend class FeaBlockMatrix;
};

class FeaColCompMatrixHandler : public FeaMatrixHandler{
// matrix handler for column compacted matrices and full vectors
public:
 // constructor
 FeaColCompMatrixHandler(FeaMap& map);

 // set up a matrix
 FeaColCompMatrix* setupMatrix();

 // set up a vector
 FeaFullVector* setupVector();
};

class FeaConstitutiveModel {
// abstract constitutive model
public:
 // provide a copy of the object
 virtual FeaConstitutiveModel& copy() = 0;

 // commit the state
 virtual void commit() = 0;
};

class FeaConstraint {
// equation of constraint and retained components
public:
 // constructor
 FeaConstraint(dictionary<FeaDofCompDesc&, double>& eqOfCon);

 // designate dof component as retained
 void addRetained(FeaDofCompDesc& desc);
// access to data
dictionary<FeaDofCompDesc&, double>& getRow();
doubleEndedList<FeaDofCompDesc>& getRetained();

class FeaConstraintHandler {
 // abstract constraint handler
 public:
 // provide the mapping between the model and analysis unknowns
 virtual table< FeaDofCompDesc &, dictionary<int, double> >&
 getMap() = 0;

 virtual int getNumEq() = 0;
 }

class FeaCoOrdSys {
 // abstract coordinate system
 public:
 // number of axis in coordinate system
 virtual int num_of_axis() = 0;

 // transformations to and from global 3D rect
 virtual FeaFullMatrix& trans_to_global() = 0;
 virtual FeaFullMatrix& trans_from_global() = 0;

 // make a copy
 virtual FeaCoOrdSys& copy() = 0;
 }

class FeaDefinedOrderHandler : public FeaReorderHandler{
 // reorder handler that places the specified dof first
 public:
 // constructor
 FeaDefinedOrderHandler(FeaModel& model,
 doubleEndedList<FeaDofGroup*>& firstDof);

 // provide the new analysis unknown order
 vector<int>& getNewOrder(FeaMap& map);
 }

class FeaDof{
 // abstract degree of freedom
 public:
 // constructors for scalar and vector dof
 FeaDof(const char* dofTypeName);
 FeaDof(const char* dofTypeName, FeaCoOrdSys& coord);
// comparison
int operator==(const FeaDofType& other);
int operator==(const char* otherName);

// number of dof components represented
int num_of_FeaDof();

// copy of the dof description
FeaDofDesc& getDesc();

// scale and commit operations
virtual void scaleLastIncBy(double scaleFactor) = 0;
virtual void commit() = 0;

// adds to the response increment
virtual void incDof(FeaGeoVector& inc);
virtual void incDof(double inc);
virtual void incDofDot(FeaGeoVector& inc);
virtual void incDofDot(double inc);
virtual void incDofDotDot(FeaGeoVector& inc);
virtual void incDofDotDot(double inc);

// define new total response
virtual void totalDof(FeaGeoVector& total);
virtual void totalDof(double total);
virtual void totalDofDot(FeaGeoVector& total);
virtual void totalDofDot(double total);
virtual void totalDofDotDot(FeaGeoVector& total);
virtual void totalDofDotDot(double total);

// return a copy of the current total
virtual FeaGeoVector& getValue();
virtual double getSValue();
virtual FeaGeoVector& getValueDot();
virtual double getSValueDot();
virtual FeaGeoVector& getValueDotDot();
virtual double getSValueDotDot();

// returns a copy of the current increment
virtual FeaGeoVector& getInc();
virtual double getSInc();
virtual FeaGeoVector& getIncDot();
virtual double getSIncDot();
virtual FeaGeoVector& getIncDotDot();
virtual double getSIncDotDot();

// copy the object
virtual FeaDof& copy() = 0;

// print out all info or just responses
virtual void print();
virtual void printDisp();
class FeaDofCompDesc {
 // used inside the FeaConstraint object to
 // identify a column of the constraint matrix
public:
 // constructor
 FeaDofCompDesc(FeaDofType& type, FeaDofGroup& node, int axisNum);

 // comparison
 int operator==(FeaDofCompDesc& other);

 // access to data
 FeaDofType& getType();
 FeaDofGroup& getGroup();

 // number of axis
 int getDofNum();
};

class FeaDofDesc {
 // describes the type and coordinate system for a dof
public:
 // constructors
 FeaDofDesc(FeaDofType& type, FeaCoOrdSys& dofCoord);
 FeaDofDesc(FeaDofType& type);

 // access to data
 FeaDofType& getType();
 FeaCoOrdSys& getCoOrdSys();

 // number of FeaDof represented
 int nDof();

 // print out the type and coordinate system
 void print();
};

class FeaDofGroup {
 // degree of freedom group
public:
 // constructor
 FeaDofGroup(const char* name);

 // add a vector or scalar degree of freedom
 void addDof(const char* dofType, FeaCoOrdSys& coord);
 void addDof(const char* dofType);

 // scale and commit operations
void scaleLastIncBy(double scaleFactor);
void commit();

// set new total responses
void totalDof(FeaDofType& dofType, FeaGeoVector& total);
void totalDof(FeaDofType& dofType, double total);
void totalDofDot(FeaDofType& dofType, FeaGeoVector& total);
void totalDofDot(FeaDofType& dofType, double total);
void totalDofDotDot(FeaDofType& dofType, FeaGeoVector& total);
void totalDofDotDot(FeaDofType& dofType, double total);

// add to the increment in responses
void incDof(FeaDofType& dofType, FeaGeoVector& inc);
void incDof(FeaDofType& dofType, double inc);
void incDofDot(FeaDofType& dofType, FeaGeoVector& inc);
void incDofDot(FeaDofType& dofType, double inc);
void incDofDotDot(FeaDofType& dofType, FeaGeoVector& inc);
void incDofDotDot(FeaDofType& dofType, double inc);

// get total responses
FeaGeoVector& getTotalV(FeaDofType& dofType);
double getTotalS(FeaDofType& dofType);
FeaGeoVector& getTotalVDot(FeaDofType& dofType);
double getTotalSDot(FeaDofType& dofType);
FeaGeoVector& getTotalVDotDot(FeaDofType& dofType);
double getTotalSDotDot(FeaDofType& dofType);

// get increment in responses
FeaGeoVector& getIncV(FeaDofType& dofType);
double getIncS(FeaDofType& dofType);
FeaGeoVector& getIncVDot(FeaDofType& dofType);
double getIncSDot(FeaDofType& dofType);
FeaGeoVector& getIncVDotDot(FeaDofType& dofType);
double getIncSDotDot(FeaDofType& dofType);

// return an iterator for the list of descriptions
listIterator<FeaDofDesc*>& getDescItr();

// comparison
int operator==(const FeaDofGroup& node);
int operator==(const char* nodeName);

// get the name of the group
char* getName();

// print out data
virtual void print();
void printDisp();
void printName();
}
class

// abstract degree of freedom load
public:
 // constructor
 FeaDofLoad(FeaTimeFunction& ntf):FeaLoad(ntf){};
 FeaDofLoad():FeaLoad(){};

 // get the current value of load
 virtual FeaAugmentedVector& getLoad(double time) = 0;
 virtual FeaAugmentedVector& getLoad() = 0;
 virtual FeaAugmentedVector& getDeltaLoad(double time) = 0;

 // print out data
 virtual void print(){};

};

class FeaDofType {
 // describes the type of a degree of freedom
 public:
 // constructors
 FeaDofType(const char* typeName);
 FeaDofType(const char* typeName, int scalarYN);

 // comparison with another or another's name
 int operator==(const FeaDofType& other);
 int operator==(const char* otherName);

 // set to and query scalar
 void setToScalar();
 int isScalar();

 // get the name of the type
 char* getName();

 // print out the name
 void print();
 }

};

class FeaElement {
 // abstract element
 public:
 // constructor
 FeaElement(const char* elementName);

 // compare name of element to given name
 int operator==(const char* givenName);

 // state operations
 virtual void updateState() = 0;
 virtual void commitState() = 0;

};
virtual double getEventFactor() = 0;

// provide element properties
virtual FeaAugmentedMatrix& getStiff() = 0;
virtual FeaAugmentedMatrix& getMass() = 0;
virtual FeaAugmentedMatrix& getDamp() = 0;
virtual FeaAugmentedVector& getResistingForce() = 0;

// provide dof to which the element connects
virtual FeaTransformation& getConnectingDof() = 0;

// print out full or just force information
virtual void print();
virtual void printForce();
};

class FeaElementLoad : public FeaLoad {
// abstract element load
public:
 // constructor
 FeaElementLoad(FeaTimeFunction& ntf):FeaLoad(ntf){};
 FeaElementLoad():FeaLoad(){};

 // set the current loading with the element
 virtual FeaAugmentedVector& getLoad(double)= 0;
 virtual FeaAugmentedVector& getLoad()= 0;
 virtual FeaAugmentedVector& getDeltaLoad(double)= 0;
};

class FeaEventToEventStaticAnalysis {
// Nonlinear Static Analysis using event-to-event
public:
 // constructor
 FeaEventToEventStaticAnalysis(FeaModel& model);

 // advance state of analysis to the next event
 void goToNextEvent();

 // initialization for the analysis
 void init(char* loadCase);

 // perform the analysis for the given load case
 void analyze(double loadStepFactor);
};

class FeaFullMatrix : public FeaMatrix {
public:
 // constructor
 FeaFullMatrix(int,int);
// print out the matrix
void print();

// operations
double& operator()(int, int);
FeaMatrix& operator*(FeaMatrix& other);
FeaFullMatrix& operator*(FeaFullMatrix& other);
FeaBlockMatrix& operator*(FeaBlockMatrix& other);
FeaFullVector& operator*(FeaFullVector& other);
FeaFullMatrix& operator*(double factor);
FeaFullMatrix& operator+(FeaFullMatrix& other);
FeaFullMatrix& operator+=(FeaMatrix& other);

// matrix triple product A^t B A
FeaFullMatrix& tripleProduct(FeaFullMatrix& A);

FeaFullMatrix& transpose();
FeaFullMatrix& getSubMatrix(int, int, int, int);

// assemble matrix using id's
void assemble(FeaFullMatrix&, int*);

// LU decomposition and forward and backward substitution
void luDecomp();
void luForBack(FeaFullVector&);

// zero out the entries of the matrix
void zero();

// acces to size of matrix
int nRow();
int nCol();

// make a copy of the matrix
FeaFullMatrix& copy();

// friends
friend class FeaFullVector;
friend class FeaColCompMatrix;
friend class FeaBlockMatrix;

};

class FeaFullMatrixHandler : public FeaMatrixHandler{

// matrix handler for full matrices
public:
 // constructor
 FeaFullMatrixHandler(FeaMap& map);

 // set up a matrix
 FeaFullMatrix* setupMatrix();
};
// set up a vector
FeaFullVector* setupVector();

class FeaFullVector : public FeaVector{
public:
 // constructor
 FeaFullVector(int length);

 // operations
 double& operator()(int);
 FeaFullVector& operator+=(FeaFullVector& other);
 FeaFullVector& operator+(FeaFullVector& other);
 FeaFullVector& operator-(FeaFullVector& other);
 FeaFullVector& operator*(double factor);
 FeaFullVector& getSubVector(int row, int column);

 // assemble given vector with id's
 void assemble(FeaFullVector& vec, int* id);

 // zero out entries
 void zero();

 // two norm
 double twoNorm();

 // get length
 int getSize();

 // print out vector
 void print();
 void printTerse();

 // friends
 friend class FeaFullMatrix;
 friend class FeaColCompMatrix;
};

class FeaGeoPoint {
// point in space
public:
 // constructor
 FeaGeoPoint(FeaFullVector& ord, FeaCoOrdSys& coord);

 // gives ordinate array in given system or global
 FeaFullVector& get_rep_in(FeaCoOrdSys& coord);
 FeaFullVector& get_rep_in();

 // distance between this and another point
double lengthTo(FeaGeoPoint& other);

// print out location
void print();

};

class FeaHingedBeamColumn : public FeaElement {
// 2D hinged beam-column element
public:
 // constructors
 // used in a 3D context
 FeaHingedBeamColumn(const char* name, double A, double I,
 Fea1DConstitutiveModel& hingeI, Fea1DConstitutiveModel& hingeJ,
 FeaNode& nodeI, FeaNode& nodeJ, FeaGeoPoint& extraPoint,
 FeaMaterial& material);
 // used in a 2D context
 FeaHingedBeamColumn(const char* name, double A, double I,
 Fea1DConstitutiveModel& hingeI, Fea1DConstitutiveModel& hingeJ,
 FeaNode& nodeI, FeaNode& nodeJ, FeaMaterial& material);

 // state operations
 void updateState();
 void commitState();
 double getEventFactor();

 // provide element properties
 FeaAugmentedMatrix& getStiff();
 FeaAugmentedMatrix& getMass();
 FeaAugmentedMatrix& getDamp();
 FeaAugmentedVector& getResistingForce();

 // provide dof to which the element connects
 FeaTransformation& getConnectingDof();

 // print out full or just force information
 void print();
 void printForce();
};

class FeaInitialElementState{
// abstract initial element state
public:
 // register presence with affected element
 virtual FeaAugmentedVector& getLoad() = 0;
};

class FeaLinearStaticAnalysis{
// Linear Static Analysis
public:

// constructor
FeaLinearStaticAnalysis(FeaModel& model);

// initialization for the analysis
void init(char* loadCase);

// perform the analysis for the given load case
void analyze();

};

class FeaLoad{
 // abstract load
 public:
 // constructors
 FeaLoad(FeaTimeFunction& timeFunction);
 FeaLoad();

 // access to the time function
 FeaTimeFunction& getTF();

 // provide current load
 virtual FeaAugmentedVector& getLoad(double)= 0;
 virtual FeaAugmentedVector& getLoad()= 0;
 virtual FeaAugmentedVector& getDeltaLoad(double)= 0;

 // print out data
 virtual void print();
};

class FeaLoadCase{
 // load case, collection of load components
 public:
 // constructor
 FeaLoadCase(const char* name);

 // comparison
 int operator==(const char* name);

 // add a load component
 void addLoad(FeaLoad& load);
 void addPresDisp(FeaPresDisp& presDisp);
 void addInitElSt(FeaInitialElementState& elState);

 // give iterators to the components
 listIterator<FeaLoad*>& loadItr();
 listIterator<FeaPresDisp*>& presDispItr();
 listIterator<FeaInitialElementState*>& initElStItr();

 // print out components
 void print();
}
class FeaMap{
 // Mapping between the model degrees of freedom and analysis unknowns
 public:
 // constructor
 FeaMap(FeaModel&, FeaConstraintHandler&, FeaReorderHandler&);

 // access to the iterators for the components of the model
 listIterator<FeaElement*>& elementItr();
 listIterator<int>& bCItr();
 listIterator<FeaLoad*>& loadItr(char* loadCase);
 listIterator<FeaPresDisp*>& presDispItr(char* loadCase);
 listIterator<FeaInitialElementState*>& initElStItr(char* loadCase);

 // return the named Load Case
 FeaLoadCase& getLoadCase(char * loadCase);

 // get the current augmented load vector
 FeaAugmentedVector& getLoad(FeaLoad& load);
 FeaAugmentedVector& getLoad(FeaLoad& load, double time);
 FeaAugmentedVector& getDeltaLoad(FeaLoad& load, double time);
 FeaAugmentedVector& getLoad(FeaInitialElementState& elementState);

 // get the element property matrix
 FeaAugmentedMatrix& getElStiff(FeaElement& element);
 FeaAugmentedVector& getResistingForce(FeaElement& element);
 FeaAugmentedMatrix& getMass(FeaElement& element);
 FeaAugmentedMatrix& getDamp(FeaElement& element);

 // update the nodes with the response vector
 void updateDofGroupsByInc(FeaFullVector& disp);
 void updateDofGroupsByTotal(FeaFullVector& disp);
 void updateDofGroupsDotByTotal(FeaFullVector& vel);
 void updateDofGroupsDotDotByTotal(FeaFullVector& accel);

 // scale back the nodes by a factor
 void scaleLastIncBy(double scaleFactor);

 // commit the nodes, then the elements
 void commit();

 // get the reordered analysis unknown
 int getEqNum(FeaDofCompDesc& dofComp);

 // get the analysis unknown in the original order
 int getOriginalEqNum(FeaDofCompDesc& dofComp);

 // get the number of analysis unknowns
 int numEq();
};

258
// return the smallest analysis unknowns connected to this one
int minEqNumConnectedTo(int analUnk);

// get analysis unknowns affected by this transformations
doubleEndedList<int>& getEqNum(FeaTransformation* trans);
};

class FeaConstraintHandler {
// abstract constraint handler
public:
 // provide the mapping between the model and analysis unknowns
 virtual table< FeaDofCompDesc &, dictionary<int, double> >&
 getMap() = 0;
 virtual int getNumEq() = 0;
};

class FeaMaterial {
// abstract material
public:
 virtual double youngsModulus() = 0;
 virtual double coefOfThermalExp() = 0;
 virtual double weightDensity() = 0;
 virtual double massDensity() = 0;
 virtual double yieldStress() = 0;
 virtual double postYieldModulus() = 0;
};

class FeaMatrix {
// abstract matrix
public:
 // constructor
 FeaMatrix(matrixType t) { type = t; }

 // compare types
 int operator==(matrixType t){return(type == t);};

 // operations
 virtual double& operator()(int row, int column)=0;
 virtual FeaMatrix& operator*(FeaMatrix& other)=0;
 virtual FeaMatrix& operator+=(FeaMatrix& other);
 virtual FeaFullMatrix& getSubMatrix(int UpperLeftRow,
 int UpperLeftCol, int LowerRightRow, int LowerRightCol)=0;

 // assemble matrix using id's
 virtual void assemble(FeaFullMatrix& matrix, int* id)=0;

 // LU decomposition and forward and backward substitution
 virtual void luDecomp()=0;
};
virtual void luForBack(FeaFullVector&)=0;

 // zero out the entries of the matrix
virtual void zero()=0;

 // number of rows and columns
virtual int nRow()=0;
virtual int nCol()=0;

 // provide the transpose
virtual FeaMatrix& transpose()=0;

 // make a copy of the matrix
virtual FeaMatrix& copy()=0;

 // print out matrix
virtual void print()=0;
};

class FeaMatrixHandler {
 // abstract matrix handler
public:
 // set up a matrix
virtual FeaMatrix* setupMatrix() = 0;

 // set up a vector
virtual FeaVector* setupVector() = 0;
};

class FeaModel {
 // holds the components of the model
public:
 // constructor
FeaModel(const char* modelName);

 // add a component to the model
void addDofGroup(FeaDofGroup& node);
void addElement(FeaElement& element);
void addLoadCase(FeaLoadCase& loadCase);
void addConstraint(FeaConstraint& constraint);
void addPrescBC(FeaDofCompDesc&);

 // iterators for the model components
listIterator<FeaElement*>& elementItr();
listIterator<FeaDofGroup*>& dofGroupItr();
listIterator<FeaLoadCase*>& loadCaseItr();
listIterator<FeaDofCompDesc*>& bCItr();
listIterator<FeaConstraint*>& constraintItr();

 // print the model and its components
};

260
void print();
};

class FeaNode : public FeaDofGroup {
// node
public:
 // constructor
 FeaNode(const char* name, const FeaGeoPoint& location);

 // get position of node
 FeaGeoPoint& getPosition();

 // print out data
 void print();
};

class FeaNoOrderHandler : public FeaReorderHandler{
// do nothing reorder handler
public:
 // constructor
 FeaNoOrderHandler(FeaModel& model);

 // provide the new analysis unknown order
 vector<int>& getNewOrder(FeaMap& map);
};

class FeaNRDynamicAnalysis{
// Nonlinear Dynamic (const accel) Analysis
// using Newton-Raphson Iteration
public:
 // constructor
 FeaNRDynamicAnalysis(FeaModel& model, double betaK, double betaM);

 // initialization for the analysis
 void init(char* loadCase);

 // perform the analysis for the given load case
 void analyze(double time);
};

class FeaNRStaticAnalysis{
// Nonlinear Static Analysis using Newton-Raphson Iteration
public:
 // constructor
 FeaNRStaticAnalysis(FeaModel& model);

 // initialization for the analysis
 void init(char* loadCase);
// perform the analysis for the given load case
void analyze(double loadStepFactor);
};

class FeaPointMass : public FeaElement {
// element that produces a point mass
public:
 // constructor
 FeaPointMass(const char*, double, FeaNode&);

 // state operations
 void setState();
 void commitState();
 double getEventManager();

 // provide element properties
 FeaAugmentedMatrix& getStiff();
 FeaAugmentedMatrix& getMass();
 FeaAugmentedMatrix& getDamp();
 FeaAugmentedVector& getResistingForce();

 // provide dof to which the element connects
 FeaTransformation& getConnectingDof();

 // print out full or just force information
 void print();
 void printForce();
};

class FeaPresDisp{
// prescribed displacement for a dof component
public:
 // constructors
 FeaPresDisp(FeaDofCompDesc& dofComp, double value,
 FeaTimeFunction& timeFunction);
 FeaPresDisp(FeaDofCompDesc& dofComp, double value);

 // get dof component
 FeaDofCompDesc& getDof();

 // give current value
 double getValue(double time);
 double getValue();
 double getDeltaValue(double time);

 // print out data
 void print();
};
class FeaReorderHandler {
 // abstract reorder handler
public:
 // provide the new analysis unknown order
 virtual vector<int>& getNewOrder(FeaMap& map) = 0;
};

class FeaScalarDof : public FeaDof {
 // scalar degree of freedom
public:
 // constructors for scalar dof
 FeaDof(const char* dofTypeName);

 // number of dof components represented
 int num_of_FeaDof();

 // scale and commit operations
 void scaleLastIncBy(double scaleFactor) = 0;
 void commit() = 0;

 // adds to the response increment
 void incDof(double inc);
 void incDofDot(double inc);
 void incDofDotDot(double inc);

 // define new total response
 void totalDof(double total);
 void totalDofDot(double total);
 void totalDofDotDot(double total);

 // return a copy of the current total
 double getSValue();
 double getSValueDot();
 double getSValueDotDot();

 // returns a copy of the current increment
 double getSInc();
 double getSIncDot();
 double getSIncDotDot();

 // copy the object
 FeaDof& copy() = 0;

 // print out all info or just responses
 void print();
 void printDisp();
};

class FeaScalarLoad : public FeaDofLoad{
public:
 // constructors
 FeaScalarLoad(FeaDofGroup& node, FeaDofType& dofType,
 double load, FeaTimeFunction& timeFunction);
 FeaScalarLoad(FeaDofGroup& node, FeaDofType& dofType,
 double load);

 // get the current value of load
 FeaAugmentedVector& getLoad(double time);
 FeaAugmentedVector& getLoad();
 FeaAugmentedVector& getDeltaLoad(double time);

 // print out data
 void print();
};

class FeaSuperElement : public FeaElement {
 // superelement
 public:

 // constructor
 FeaSuperElement(const char* name, FeaModel& model,
 doubleEndedList<FeaDofGroup*>& modelNodes,
 doubleEndedList<FeaDofGroup*>& submodelNodes);

 // state operations
 void updateState();
 void commitState();
 double getEventFactor();

 // provide element properties
 FeaAugmentedMatrix& getStiff();
 FeaAugmentedMatrix& getMass();
 FeaAugmentedMatrix& getDamp();
 FeaAugmentedVector& getResistingForce();

 // provide dof to which the element connects
 FeaTransformation& getConnectingDof();

 // print out full or just force information
 void print();
 void printForce();
};

class FeaSuperElementInitialState : public FeaInitialElementState {
 // initial state for a superelement
 public:

 // constructor
 FeaSuperElementInitialState(FeaSuperElement& el, char* loadCase);
// register the state
FeaAugmentedVector& getLoad();
};

class FeaSuperElementLoad : public FeaElementLoad {
// load for the superelement
public:
// constructor
FeaSuperElementLoad(FeaSuperElement& el, char* loadCase);

// register load
FeaAugmentedVector& getLoad();
FeaAugmentedVector& getLoad(double time);
FeaAugmentedVector& getDeltaLoad(double time);
};

class FeaTimeFunction{
// holds and interpolates between values and times
public:
// constructor
FeaTimeFunction();

// add a pair
void addTimeAndValue(double time, double value);

// interpolate to get value for the given time
double getValue(double time);
};

class FeaTransConHandler : public FeaConstraintHandler{
// transformation constraint handler
public:
// constructor
FeaTransConHandler(int nBuckets, FeaModel& model);

// provide the mapping between the model and analysis unknowns
table< FeaDofCompDesc &, dictionary<int, double> > & getMap();

// number of analysis unknowns
int getNumEq();
};

class FeaTransDesc{
// description of a degree of freedom and coordinate system
// used in augmented matrices and vectors
public:
// constructors
FeaTransDesc(FeaDofType& type, FeaDofGroup& node, FeaCoOrdSys& c);
FeaTransDesc(FeaDofType& type, FeaDofGroup& node);
FeaTransDesc(FeaDofType& type);

// access to data
FeaDofType& getType();
FeaDofGroup& getGroup();
FeaCoOrdSys& getCoOrdSys();

// number of dof components represented
int nDof();
};

class FeaTransformation{
// transformation matrix, used in augmented matrices and vectors
public:
// constructor
FeaTransformation(int rowBlocks, int columnBlocks);

// add an desc. to the list with no associated T
void addDesc(FeaTransDesc& desc);

// add desc and add assoc subT to t
void addDesc(FeaTransDesc& desc, FeaFullMatrix& t);
void addDescLocalToNodal(FeaTransDesc& desc, FeaFullMatrix& t);

// define a T matrix block
void putT(FeaFullMatrix& t, int row, int column);

// return an iterator to the list of desc
listIterator<FeaTransDesc*>& getDescItr();

// return a copy of the transformation matrix
FeaBlockMatrix& getTrans();

int nRow(); // number of rows in t
int nCol(); // number of columns in t
int nRowBlock(); // number of row blocks in t
int nColBlock(); // number of column blocks in t

void setEqNumbers(int* array); // set the equation number array
int* getEqNumbers(); // return the equation number array

friend class FeaAugmentedMatrix;
friend class FeaAugmentedVector;
};

class FeaTrussBar : public FeaElement {
// truss bar element
public:
// constructor
FeaTrussBar(const char* name, double area, FeaNode& nodeI, FeaNode& nodeJ, Fea1DConstitutiveModel& constMod, FeaMaterial& material, double damping);

// state operations
void updateState();
void commitState();
double getEventFactor();

// provide element properties
FeaAugmentedMatrix& getStiff();
FeaAugmentedMatrix& getMass();
FeaAugmentedMatrix& getDamp();
FeaAugmentedVector& getResistingForce();

// provide dof to which the element connects
FeaTransformation& getConnectingDof();

// print out full or just force information
void print();
void printForce();

// element load and initial state operations
FeaAugmentedVector& pointLoad(FeaTrussBarPointLoad* elLoad);
FeaAugmentedVector& deltaPointLoad(FeaTrussBarPointLoad* elLoad);
FeaAugmentedVector& temperature(FeaTrussBarTemp* elState);
};

class FeaTrussBarPointLoad : public FeaElementLoad {
// point load for a truss bar
public:
 // constructors
 FeaTrussBarPointLoad(FeaTrussBar& el, double load, double dist, FeaTimeFunction& timeFunc);
 FeaTrussBarPointLoad(FeaTrussBar& el, double load, double dist);

 // set the current loading with the element
 FeaAugmentedVector& getLoad(double time);
 FeaAugmentedVector& getLoad();
 FeaAugmentedVector& getDeltaLoad(double time);

 // element access to data
 double getPointLoad();
 double getDeltaPointLoad();
 double getPointLocation();
};

class FeaTrussBarTemp : public FeaInitialElementState {
// temperature state for a truss bar
public:
class FeaVector
// abstract numerical vector
public:

// constructor
FeaVector(matrixType t) { type = t; };

// compare types
int operator==(matrixType t);

// operations
virtual double& operator()(int)=0;
virtual FeaFullVector& getSubVector(int, int)=0;

// print out vector
virtual void print()=0;
virtual void printTerse()=0;

};

class FeaVectorDof : public FeaDof
// vector degree of freedom
public:

// constructor for vector dof
FeaDof(const char* dofTypeName, FeaCoOrdSys& coord);

// number of dof components represented
int num_of_FeaDof();

// scale and commit operations
void scaleLastIncBy(double scaleFactor);
void commit();

// adds to the response increment
void incDof(FeaGeoVector& inc);
void incDofDot(FeaGeoVector& inc);
void incDofDotDot(FeaGeoVector& inc);

// define new total response
void totalDof(FeaGeoVector& total);
void totalDofDot(FeaGeoVector& total);
void totalDofDotDot(FeaGeoVector& total);
// return a copy of the current total
FeaGeoVector& getValue();
FeaGeoVector& getValueDot();
FeaGeoVector& getValueDotDot();

// returns a copy of the current increment
FeaGeoVector& getInc();
FeaGeoVector& getIncDot();
FeaGeoVector& getIncDotDot();

// copy the object
FeaDof& copy() = 0;

// print out all info or just responses
void print();
void printDisp();

};

class FeaVectorLoad : public FeaDofLoad{
 // vector degree of freedom load
public:
 // constructors
 FeaVectorLoad(FeaDofGroup& node, FeaDofType& dofType,
 FeaGeoVector& load, FeaTimeFunction& timeFunction);
 FeaVectorLoad(FeaDofGroup& node, FeaDofType& dofType,
 FeaGeoVector& load);

 // get the current value of load
 FeaAugmentedVector& getLoad(double time);
 FeaAugmentedVector& getLoad();
 FeaAugmentedVector& getDeltaLoad(double time);

 // print out data
 void print();
};

269