PROBLEM 11.41

Automobiles \(A \) and \(B \) are traveling in adjacent highway lanes and at \(t = 0 \) have the positions and speeds shown. Knowing that automobile \(A \) has a constant acceleration of 1.8 ft/s\(^2\) and that \(B \) has a constant deceleration of 1.2 ft/s\(^2\), determine (a) when and where \(A \) will overtake \(B \), (b) the speed of each automobile at that time.

PROBLEM 11.47

Slider block \(A \) moves to the left with a constant velocity of 6 m/s. Determine (a) the velocity of block \(B \), (b) the velocity of portion \(D \) of the cable, (c) the relative velocity of portion \(C \) of the cable with respect to portion \(D \).

PROBLEM 11.59

The system shown starts from rest, and each component moves with a constant acceleration. If the relative acceleration of block \(C \) with respect to collar \(B \) is 60 mm/s\(^2\) upward and the relative acceleration of block \(D \) with respect to block \(A \) is 110 mm/s\(^2\) downward, determine (a) the velocity of block \(C \) after 3 s, (b) the change in position of block \(D \) after 5 s.