Solutions to Review Problems on Derivatives

Note that the derivatives may not be fully simplified. 1. Find the derivative \(\frac{dy}{dx} (= f'(x)) \):

a) \(y' = f'(x) = \cos(\cos(\tan x)) \cdot (-\sin(\tan x)) \cdot \sec^2 x \)

b) \(y' = f'(x) = 12x \sec^6(x^2 + 1) \tan(x^2 + 1) \)

c) \(y' = f'(x) = \frac{(x^3+4x-9) \cos x-(3x^2+4) \sin x}{(x^3+4x-9)^2} \)

d) \(y' = f'(x) = -\frac{2(\tan(x^2-3)+2x^2 \sec^2(x^2-3))}{(x \tan(x^2-3))^3} \)

e) \(y' = f'(x) = (\sin 1)x^{(\sin 1-1)} \)

f) \(y' = f'(x) = 2x \)

g) \(y' = f'(x) = \frac{1-2xy^2}{2x^2 y+\cos y} \)

2. a) The slope of the line segment \(L \) is \(\frac{f(b)-f(a)}{b-a} \).

 b) Geometrically, this says that the tangent line at the point \((c, f(c)) \) is parallel to \(L \).

 c) The right hand side represents your average velocity over the time interval \(a \leq t \leq b \). The left hand side represents your instantaneous velocity at time \(t = c \).

 d) The Mean Value Theorem guarantees that you went 100 km/hr at some point on your trip (maybe at many instants along the way, but definitely at least one instant).

3. a) \(f(x) \) is increasing where \(f'(x) > 0 \), i.e when \(x > 1 \). Similarly, \(f(x) \) is decreasing where \(f'(x) < 0 \), i.e. when \(x < 1 \).

 b) Based on part a) there is a local minimum at \(x = 1 \). There is no local maximum.

 c) \(f'(x) \) is increasing where \(f''(x) > 0 \) and \(f'(x) \) is decreasing where \(f''(x) < 0 \). Computing the second derivative, one obtains

 \[f''(x) = (x-2)(3x-4) \]
Thus, \(f'(x) \) is decreasing on the interval \((4/3, 2)\) and \(f'(x) \) is increasing on \((-\infty, 4/3) \cup (2, \infty)\).

d) Concavity is determined precisely by the sign of the second derivative. Thus, by part c), \(f(x) \) is concave up on \((-\infty, 4/3) \cup (2, \infty)\) and concave down on \((4/3, 2)\).

e) An inflection point is where the concavity changes. By part d) this happens when \(x = 4/3 \) and \(x = 2 \).