The linear objects in \mathbb{R}^2 are straight lines. One dimension higher, the linear objects in \mathbb{R}^3 are planes.

Exercise 1 Draw the usual xyz-coordinate system with the x-axis protruding out of the page, the y-axis pointing to your right and the z-axis pointing “up”. Now shade in the xy-plane lightly, so that the coordinate axes are still visible (though some of the negative z-axis may be obscured now because it’s partly “below” your xy-plane.)

[Tricks of the trade include using pencil strokes parallel to the x-axis, shading right on top of the negative z-axis, and not shading on top of the positive z-axis. These moves make the xy-plane look “flat” and seem to pass “behind” the positive z-axis.]

The point of Exercise 1 is that we ought to cultivate our three-dimensional drawing capabilities in order to better visualize the analytical mathematics. This is certainly the name of the game in Calculus IV; no time like the present!

Exercise 2 Consider the point $P = (2, 3, 0)$ in the xy-plane. Now pick any other point $Q = (a, b, 0)$ in the xy-plane and let $\vec{v} = \overrightarrow{PQ}$. Calculate $\vec{k} \cdot \vec{v}$.

Exercise 3 Now pick any other point $Q = (a, b, c)$ not in the xy-plane and let $\vec{v} = \overrightarrow{PQ}$. Calculate $\vec{k} \cdot \vec{v}$.

Exercise 4 Argue that the xy-plane can be characterized as the set of all points (x, y, z) such that

$$\langle x - 2, y - 3, z - 0 \rangle \cdot \langle 0, 0, 1 \rangle = 0.$$

The whole construction of exercises 1 through 4 can be repeated for any point in any plane, not just the point $P = (2, 3, 0)$ in the xy-plane. Moreover, there is nothing special about taking the dot product of \overrightarrow{PQ} with $(0, 0, 1)$ specifically.

Exercise 5 Sketch the plane consisting of all points (x, y, z) such that

$$\langle x + 2, y - 0, z - 0 \rangle \cdot \langle 1, 0, 1 \rangle = 0.$$

Exercise 6 Sketch the plane consisting of all points (x, y, z) such that

$$\langle x - 2, y - 2, z - 4 \rangle \cdot \langle 2, -1, 3 \rangle = 0.$$

Exercise 7 By expanding the dot product condition, show that the plane of exercise 6 is the set of all points (x, y, z) such that

$$2x - y + 3z = 14.$$
The first seven exercises share a common thread. Namely, each plane is uniquely determined by a known point P in the plane and a perpendicular normal vector \vec{n} that determines the “tilt” of the plane. In exercise 4, we characterized the xy-plane as the unique plane through the point $P = (2, 3, 0)$ with normal vector $\vec{n} = (0, 0, 1)$.

Exercise 8 Identify who is playing the role of P and who is playing the role of the normal vector \vec{n} in each of the exercises 5 and 6.

Exercise 9 Looking back now at exercise 7, is it easy to pick out a normal vector \vec{n} for the plane $2x - y + 3z = 14$? Can you generalize this observation into a theorem?

Discussion Questions

1. Must two planes in \mathbb{R}^3 intersect? If not, how can you tell at a glance of their equations whether they do or do not intersect?

2. When two planes intersect, what geometrical object is the set of points (x, y, z) common to both planes?

3. How would you find where (or if) the z-axis pierces the plane $31x - 70y + \pi z = 12$?

4. How many points determine a line in \mathbb{R}^2? What is the analogous statement concerning planes in \mathbb{R}^3?

5. Given two vectors in a plane, how could you create a normal vector \vec{n} for that plane?

And finally, the biggest question of all...

If calculus I is all about whether a curve has a tangent line, then calculus IV is all about whether a [??????????] has a tangent [?????????]! (You may now savor the giddy anticipation of next quarter and have a lovely weekend!)