There are four problems. Do them all. You have choices in problems 3 and 4. Neatness counts. Box your answers.

<table>
<thead>
<tr>
<th>Lab</th>
<th>Day 1</th>
<th>Final</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>1</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

1. a) Circle T for true or F for false.
 i. The point \(x_0 = 1 \) is a regular singular point of the Legendre equation
 \[(1 - x^2)y'' - 2xy' + 6y = 0. \]
 \[T \ F \]

 ii. The exponent for a Frobenius series solution to the equation \(xy'' + 3y' + xy = 0 \) is \(r = 0 \).
 \[T \ F \]

 iii. The recursion relation for a power series solution to \(y' + xy = 0 \) is \(a_n = -\frac{a_{n-1}}{n+1} \).
 \[T \ F \]

 iv. The Laplace transform of \(f(t) = u(t - 2)t^2 \) is \(F(s) = e^{-2s} \cdot \frac{2}{s^3} \).
 \[T \ F \]

 v. The inverse Laplace transform of \(F(s) = \frac{e^{-\pi s}}{s^2 + 4} \) is \(u(t - \pi) \sin(2t) \).
 \[T \ F \]

b) Fill in the blanks.
 i. The general solution to \(xy'' + 3y' + xy = 0 \), in terms of Bessel functions, is
 \[y(x) = \]
 \[\] .

 ii. The Laplace transform of \(t \cos(2t) \) is
 \[\] .

 iii. We showed in class yesterday that \(J_{1/2}(x) = \sqrt{\frac{2}{\pi x}} \sin(x) \). It is also true that \(J_{-1/2}(x) = \sqrt{\frac{2}{\pi x}} \cos(x) \).
 Use these facts, and the recursion relation for the Bessel functions, to obtain a formula for \(J_{3/2}(x) \) in terms of sines and cosines. Show your work in the space below.
 \[J_{3/2}(x) = \]
 \[\] .
2. Obtain the solution to the initial value problem
\[y'' + 4y = f(t), \quad y(0) = 1, \quad y'(0) = 0, \] where the driver \(f \) is defined as follows.

\[
f(t) = \begin{cases}
0 & , \quad 0 < t < \pi \\
1 & , \quad \pi < t < 3\pi \\
0 & , \quad 3\pi < t
\end{cases}
\]

See the graph.

Add a sketch of the solution curve to the plot on the right.
3. Do part a or b, not both.

a) Use the method of Laplace transforms to solve the initial value problem

\[x'' + 3x' + 2x = \delta(t - 2), \quad x(0) = 1, \quad x'(0) = -2. \]

b) Use Laplace transforms to obtain the solution to the following system of differential equations and initial conditions.

\[
\begin{align*}
x' &= x - y, \quad x(0) = 1 \\
y' &= x + y, \quad y(0) = 0
\end{align*}
\]
4. Do part a or part b, not both.

a) Find the recursion relation for a power series solution for \(y'' + x^2 y' + 2xy = 0 \). Use the recursion relation to write out the first four non-zero terms of the power series solution that satisfies the initial conditions \(y(0) = 0, y'(0) = 1 \).

b) Consider the differential equation \(x^2 y'' + (x^2 - 2)y = 0 \).

 i. Obtain the exponents of the possible Frobenius series solutions expanded about \(x = 0 \).

 ii. Use what you found in part i to write out the form of two linearly independent solutions valid for \(x > 0 \).

 \[
 y_1 = \ldots \\
 y_2 = \ldots \\
 \]

 iii. Obtain one Frobenius series solution to this equation, valid for \(x > 0 \). Write the solution in summation notation.

 iv. Show that the second solution is not a Frobenius series.