1. Let $f : A \to B$ and $D \subseteq B$. Prove that $f(f^{-1}(D)) = D \cap \text{Range } f$.

2. Let $f : A \to B$ and $C, D \subseteq A$. Prove that $f(D \cup C) = f(D) \cup f(C)$.

3. Let $f : A \to B$ and $C, D \subseteq B$. Prove that $f^{-1}(D \cup C) = f^{-1}(D) \cup f^{-1}(C)$.

 Given $f : A \to B$ we define the induced functions $\overline{f} : \mathcal{P}(A) \to \mathcal{P}(B)$ by $\overline{f}(C) = f(C)$ for all $C \in \mathcal{P}(A)$ and $\hat{f} : \mathcal{P}(B) \to \mathcal{P}(A)$ by $\hat{f}(D) = f^{-1}(D)$ for all $D \in \mathcal{P}(B)$.

4. Let $f : A \to B$. Prove that if f is injective then \overline{f} is injective.

5. What condition will make the induced function $\hat{f} : \mathcal{P}(B) \to \mathcal{P}(A)$ injective?

6. Let A and B be sets. If A is finite, prove that $A \cap B$ is finite.

7. Let A and B be sets. If A and B are finite, prove that $A \cup B$ is finite.

8. Let A and B be sets such that $A \subseteq B$. If A is infinite, prove that B is infinite.

9. Let $f : A \to B$ be surjective and A be finite. Prove that B is finite.

The grader will carefully consider 7 and 9.