Read sections:
1. 1.6 (for 1/17)

Do the following problems:
1. 1.5.2: Determine whether the following sets are linearly dependent or linearly independent.
 (a) \(\left\{ \begin{pmatrix} 1 & -3 \\ -2 & 4 \end{pmatrix}, \begin{pmatrix} -2 & 6 \\ 4 & -8 \end{pmatrix} \right\} \) in \(M_{2 \times 2}(\mathbb{R}) \).
 (b) \(\left\{ \begin{pmatrix} 1 & -2 \\ -1 & 4 \end{pmatrix}, \begin{pmatrix} -1 & 1 \\ 2 & -4 \end{pmatrix} \right\} \) in \(M_{2 \times 2}(\mathbb{R}) \).
 (c) \(\{x^3 + 2x^2, -x^2 + 3x + 1, x^3 - x^2 + 2x - 1\} \) in \(P_3(\mathbb{R}) \).
 (d) \(\{x^3 - x, 2x^2 + 4, -2x^3 + 3x^2 + 2x + 6\} \) in \(P_3(\mathbb{R}) \).
 (e) \(\{(1, -1, 2), (1, -2, 1), (1, 1, 4)\} \) in \(\mathbb{R}^3 \).
 (f) \(\{(1, -1, 2), (2, 0, 1), (-1, 2, -1)\} \) in \(\mathbb{R}^3 \).

2. 1.5.9: Let \(u \) and \(v \) be distinct vectors in a vector space \(V \). Show that \(\{u, v\} \) is linearly dependent if and only if \(u \) or \(v \) is a multiple of the other.

3. 1.5.10: Give an example of three linearly dependent vectors in \(\mathbb{R}^3 \) such that none of the three is a multiple of another.

4. 1.5.13: Let \(V \) be a vector space over a field of characteristic not equal to two (so just think \(\mathbb{R} \)).
 (a) Let \(u \) and \(v \) be distinct vectors in \(V \). Prove that \(\{u, v\} \) is linearly independent if and only if \(\{u+v, u-v\} \) is linearly independent.
 (b) Let \(u, v, \) and \(w \) be distinct vectors in \(V \). Prove that \(\{u, v, w\} \) is linearly independent if and only if \(\{u+v, u+w, v+w\} \) is linearly independent.

5. 1.5.16: Prove that a set \(S \) of vectors is linearly independent if and only if each finite subset of \(S \) is linearly independent.

6. 1.6.7: The vectors \(u_1 = (2, -3, 1), u_2 = (1, 4, -2), u_3 = (-8, 12, -4), u_4 = (1, 37, -17), \) and \(u_5 = (-3, -5, 8) \) generate \(\mathbb{R}^3 \). Find a subset of the set \(\{u_1, u_2, u_3, u_4, u_5\} \) that is a basis for \(\mathbb{R}^3 \).

7. 1.6.9: The vectors \(u_1 = (1, 1, 1, 1), u_2 = (0, 1, 1, 1), u_3 = (0, 0, 1, 1), \) and \(u_4 = (0, 0, 0, 1) \) form a basis for \(P_4 \). Find the unique representation of an arbitrary vector \((a_1, a_2, a_3, a_4) \) in \(P_4 \) as a linear combination of \(u_1, u_2, u_3, \) and \(u_4 \).

8. 1.6.11: Let \(u \) and \(v \) be distinct vectors of a vector space \(V \). Show that if \(\{u, v\} \) is a basis for \(V \) and \(a \) and \(b \) are nonzero scalars, then both \(\{u + v, au\} \) and \(\{au, bv\} \) are also bases for \(V \).

9. 1.6.20: Let \(V \) be a vector space having dimension \(n \), and let \(S \) be a subset of \(V \) that generates \(V \).
 (a) Prove that there is a subset of \(S \) that is basis for \(V \). (Be careful not to assume that \(S \) is finite).
 (b) Prove that \(S \) contains at least \(n \) vectors.

The grader will carefully consider 1.5.16 and 1.6.20 so you should write these up more carefully.