Math 306, Linear Algebra II, Winter 2014
Homework 2, due Tuesday 1/14

Read sections:
1. 1.4 (for 1/10)

Do the following problems:
1. 1.3.8: Determine whether the following sets are subspaces of \(\mathbb{R}^3 \) under the operations of addition and scalar multiplication defined on \(\mathbb{R}^3 \). Justify your answers.
 (a) \(W_1 = \{ (a_1, a_2, a_3) \in \mathbb{R}^3 : a_1 = 3a_2 \text{ and } a_3 = -a_2 \} \)
 (b) \(W_2 = \{ (a_1, a_2, a_3) \in \mathbb{R}^3 : a_1 = a_3 + 2 \} \)
 (c) \(W_3 = \{ (a_1, a_2, a_3) \in \mathbb{R}^3 : 2a_1 - 7a_2 + a_3 = 0 \} \)
 (d) \(W_4 = \{ (a_1, a_2, a_3) \in \mathbb{R}^3 : a_1 - 4a_2 - a_3 = 0 \} \)
 (e) \(W_5 = \{ (a_1, a_2, a_3) \in \mathbb{R}^3 : a_1 + 2a_2 - 3a_3 = 1 \} \)
 (f) \(W_6 = \{ (a_1, a_2, a_3) \in \mathbb{R}^3 : 2a_1^2 - 3a_2^2 = 6a_3^2 = 0 \} \)

2. 1.3.10: Prove that \(W_1 = \{ (a_1, a_2, \ldots, a_n) \in F^n : a_1 + a_2 + \cdots + a_n = 0 \} \) is a subspace of \(F^n \), but \(W_2 = \{ (a_1, a_2, \ldots, a_n) \in F^n : a_1 + a_2 + \cdots + a_n = 1 \} \) is not.

3. 1.3.11: Is the set \(W = \{ f(x) \in P(F) : f(x) = 0 \text{ or } f(x) \text{ has degree } n \} \) a subspace of \(P(F) \) if \(n \geq 1 \)? Justify your answer.

4. 1.3.13: Let \(S \) be a nonempty set and \(F \) a field. Prove that for any \(s_0 \in S, \{ f \in F(S, F) : f(s_0) = 0 \} \) is a subspace of \(F(S, F) \).

5. 1.3.18: Prove that a subset \(W \) of a vector space \(V \) is a subspace of \(V \) if and only if \(0 \in W \) and \(ax + y \in W \) whenever \(a \in F \) and \(x, y \in W \).

6. 1.3.24: Show that \(F^n \) is the direct sum of the subspaces \(W_1 = \{ (a_1, a_2, \ldots, a_n) \in F^n : a_n = 0 \} \) and \(W_2 = \{ (a_1, a_2, \ldots, a_n) \in F^n : a_1 = a_2 = \cdots = a_{n-1} = 0 \} \).

7. 1.3.25: Let \(W_1 \) denote the set of all polynomials \(f(x) \) in \(P(F) \) such that in the representation
 \[f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0, \]
 we have \(a_i = 0 \) whenever \(i \) is even. Likewise let \(W_2 \) denote the set of all polynomials \(g(x) \) in \(P(F) \) such that in the representation
 \[g(x) = b_m x^m + b_{m-1} x^{m-1} + \cdots + b_1 x + b_0, \]
 we have \(b_i = 0 \) whenever \(i \) is odd. Prove that \(P(F) = W_1 \oplus W_2 \).

8. 1.3.30: Let \(W_1 \) and \(W_2 \) be subspaces of a vector space \(V \). Prove that \(V \) is the direct sum of \(W_2 \) and \(W_2 \) if and only if each vector in \(V \) can be uniquely written as \(x_1 + x_2 \), where \(x_1 \in W_1 \) and \(x_2 \in W_2 \).

9. Suppose that \(V \) is a vector space over a field \(F \) with subspaces \(U \) and \(W \). In addition, suppose that \(U \oplus W \) is a subspace of \(V \). Prove that \(U \subseteq W \text{ or } W \subseteq U \).

The grader will carefully consider 1.3.30 and 9 above, so you should write these up more carefully.