1. 18CE6 Show that \(f(x) = x^5 + x^4 + 2x^3 + 2x + 2 \) is irreducible in \(\mathbb{F}_3[x] \) as follows: (i) Show that \(f(x) \) has no roots in \(\mathbb{F}_3 \). (ii) Suppose \(f(x) = (ax^2 + bx + c)(dx^3 + ex^2 + fx + g) \), then you can assume \(a = d = 1 \); multiply the right side together collect coefficients of \(x^4, x^3, x^2, x, 1 \) together and equate them to the coefficients of \(f(x) \) to get five equations in the five unknowns \(b, c, e, f, g \). Show the the five equations have no simultaneous solution in \(\mathbb{F}_3 \).

(i) To check whether \(f(x) \) has any linear factors we check to see if it has any roots (this is enough by the root theorem). But clearly:

\[
\begin{align*}
f(0) &= (0)^5 + (0)^4 + 2(0)^3 + 2(0) + 2 = 2 \\ f(1) &= (1)^5 + (1)^4 + 2(1)^3 + 2(1) + 2 = 8 = 2 \\ f(2) &= (2)^5 + (2)^4 + 2(2)^3 + 2(2) + 2 = 70 = 1
\end{align*}
\]

so we conclude that \(f \) has no linear factors.

(ii) If \(f(x) \) has any factors, it must have a quadratic factor, so that \(f(x) = (ax^2 + bx + c)(dx^3 + ex^2 + fx + g) \). Now \(ad = 1 \), thus \(a = d^{-1} \). So if \(a \neq 1 \neq d \) we can rewrite \(f \) as

\[
f(x) = (ax^2 + bx + c)(dx^3 + ex^2 + fx + g) = ad(ax^2 + bx + c)(dx^3 + ex^2 + fx + g) = (aax^2 + abx + ac)(dax^3 + ebx + dc) = (x^2 + abx + ac)(x^3 + eax^2 + afx + ag)
\]

and thus it is clear that we may take \(a = 1 = d \).

Expanding our expression for \(f \) we find that:

\[
x^5 + x^4 + 2x^3 + 2x + 2 = f(x) = x^5 + (b + e)x^4 + (c + be + f)x^3 + (ce + bf + g)x^2 + (cf + bg)x + cg \text{ or thus that}
\]

\[
\begin{align*}
b + e &= 1 \\
c + be + f &= 2 \\
cea + b + f + g &= 0 \\
cf + bg &= 2 \\
cg &= 2
\end{align*}
\]

These equations aren’t linear, of course, so we have to be a little more thoughtful to solve them. We know, for instance, that \(c = 1 \) or \(c = 2 \) (remember we are in \(\mathbb{F}_3 \)). It is also the case that \(b = 0, b = 1, \) or \(b = 2 \).

Note that \(g = 2/c \) and \(e = 1 - b \) so that \(f = 2 - c - be, f = (-g - ce)/b \), and \(f = (2 - bg) \).

A little table will be helpful.

<table>
<thead>
<tr>
<th>c</th>
<th>g</th>
<th>b</th>
<th>e</th>
<th>f = 2 - c - be</th>
<th>f = (-g - ce)/b</th>
<th>f = (2 - bg)/c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>*</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>*</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>
2. 21AE5 If \(p(x) \) has degree \(2d \) and \(n_1, \ldots, n_d \) are distinct integers such that \(p(n_i) = p_i \) is prime for each \(i, 1 \leq i \leq d \), how many polynomials \(a_s(x) \) arise as possible divisors of \(p(x) \) using Lagrange interpolation? Do they all pair off as associates?

First of all, there is a typo in this problem. It should say: \(n_1, \ldots, n_d \) are distinct integers such that \(p(n_i) = p_i \) is prime for each \(i, 0 \leq i \leq d \) . . .

That settled, suppose that \(s = \{s_0, \ldots, s_d\} \) is a vector such that \(s_i \mid p_i \) for all \(0 \leq i \leq d \). Because the \(p_i \) are prime, it follows that \(s_i = 1, s_i = -1, s_i = p_i, \) or \(s_i = -p_i \). Thus for each \(s_i \) there are four possibilities, and thus it is clear that there are \(4^{d+1} \) such vectors.

We need to show that if \(s \) and \(s' \) are two such vectors with the additional property that \(s \neq s' \), then \(a_s(x) \neq a_{s'}(x) \). This will guarantee that there are \(4^{d+1} \) possible polynomials \(a_s(x) \).

By reordering the \(n_i \) we may assume that \(s_0 \neq s'_0 \). If \(a_{s_1}(x) = a_{s_2}(x) \) we know that \(s_0 h_0(n_0) + \cdots + s_n h_d(n_0) = s'_0 h'_0(n_0) + \cdots + s'_{n_d} h'_{d}(n_0) \). But \(h_0(n_0) = 0 = h'_i(n_0) \) for \(i \geq 1 \), and \(h_0(n_0) = 1 = h'_0(n_0) \), so \(s_0 h_0(n_0) = s'_0 h'_0(n_0) \), that is, \(s_0 = s'_0 \), a contradiction. We conclude that \(a_s(x) \neq a_{s'}(x) \) as required.

Finally, not that if \(s = \{s_0, \ldots, s_d\} \) is a vector such that \(s_i \mid p_i \) for all \(0 \leq i \leq d \), then the same is also true of \(-s = \{-s_0, \ldots, -s_d\} \). But because \(a_s(x) \) is the unique polynomial of degree \(\leq d \) such that \(a_s(n_i) = p_i \) for \(0 \leq i \leq d \), the fact that \(-a_s(s_i) = -s_i = a_{-s} \) implies that \(-a_s(x) = a_{-s}(x) \). That says that \(-a_s(x) \) and \(a_{-s}(x) \) are associates so that the \(a_s(x) \) do pair off as associates.

3. Problem 2. How many ways are there of coloring the following, where two colorings are considered identical if they differ by a rotation: (a) a 2x2 square with 3 colors, (b) a 3x3 square with 3 colors, (c) a 2x2 square with \(n \) colors.

We could use Burnside lemma to do each of these problems, but probably it is easier to use theorem 11.1.

Here the group \(G \) acting on our solids is \(G = \{\epsilon, \rho, \rho^2, \rho^3\} \), where \(\rho \) is rotation a quarter turn counter clockwise. Thus if \(X = \{1, \ldots, n\} \) is the number of squares, the element \(\pi^{(k)} \in G^{(k)} \) acts on \(\{c_1, \ldots, c_n\} \in C_k(X) \) by the rule \(\pi^{(k)}(\{c_1, \ldots, c_n\}) = \{c_{\pi^{-1}(1)}, \ldots, c_{\pi^{-1}(n)}\} \). Under this scheme, and numbering the squares of the matrix from 1 to \(n \), the color of the \(i \)th square in the resulting matrix (after acting by \(\pi^{(k)} \)), is the color that was in the \(\pi^{-1}(i) \)th square in the original matrix. This change in subscripts put color \(c_i \) in the \(j \)th square if and only if the color \(c_i \) is in the square that moves onto the \(j \)th square after acting on our matrix with \(\pi \).

Thus the orbits of \(G^{(k)} \) are in one-to-one correspondence with the \(nxn \) matrices colored with \(k \) colors where we regard two matrices equal if one can be obtained from the other by a rotation.

But \(P_G(x) \) is easy to calculate. For (a) the elements of group \(G \) are in cycle notation \(\epsilon = (1)(2)(3)(4), \rho = (1234), \rho^2 = (13)(24), \) and \(\rho^3 = (1432) \). Thus \(P_G(x) = 1/4(x^4 + x^2 + 2x) \) and \(P_G(3) = 1/4(3^4 + 3^2 + 2 \cdot 3) = 24 \).
For (b), the elements of group G are in cycle notation $\epsilon = (1)(2)(3)(4)(5)(6)(7)(8)(9)$, $\rho = (1793)(2486)(5)$, $\rho^2 = (19)(37)(28)(46)(5)$, and $\rho^3 = (1397)(2684)(5)$.

Here I am thinking of the squares labeled as follows:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

Thus in this instance $P_G(x) = 1/4(x^9 + x^5 + 2x^3)$, so $P_G(3) = 1/4(3^9 + 3^5 + 2 \cdot 3^3) = 4995$.

Finally, in (c) we note that the same polynomial from part (a) tells us that there are $P_G(n) = 1/4(n^4 + n^2 + 2n)$ possible colorings. $P_G(n) = 1/4(n^4 + n^2 + 2 \cdot n)$.