Math 414, Analysis, Spring 2007

Problem Set 5, due Friday, June 8

1. Prove the following: if \(P \, dx + Q \, dy \) is an exact differential, and \(C \) is a piecewise smooth curve from \(p \) to \(q \), then there is a function \(f \) such that \(\int_C P \, dx + Q \, dy = f(q) - f(p) \).

2. Show that \(P \, dx + Q \, dy \) is an exact differential on the unit disk in \(\mathbb{R}^2 \) if \(P = y^2 e^{xy} \) and \(Q = (1 + xy) e^{xy} \).

3. Is \(P \, dx + Q \, dy \) an exact differential on the punctured open unit disk in \(\mathbb{R}^2 \) (\(\{ (x, y) \mid 0 < x^2 + y^2 < 1 \} \)) if \(P = \frac{y}{x^2 + y^2} \) and \(Q = \frac{x}{x^2 + y^2} \)? What about on the open rectangle \((0, 1) \times (0, 1) \)?

4. If the functions \(P, Q, P_2, \) and \(Q_1 \) are continuous in \(D \) and \(P \, dx + Q \, dy \) is an exact differential in \(D \), then prove that \(P_2 = Q_1 \) throughout \(D \).

5. Suppose that \(S \) is an elementary set

\[
S = \{(x, y) \mid a \leq x \leq b, \mu(x) \leq y \leq v(x)\}
\]

and \(f \) is a continuous function on \(S \). Prove that

\[
\int_S f(x, y) \, dA = \int_a^b \int_{\mu(x)}^{v(x)} f(x, y) \, dy \, dx.
\]