Math 414, Analysis, Spring 2007

Problem Set 4, due Friday, May 25

1. Suppose that f is a function on \mathbb{R}^2 such that f_1 and f_2 are bounded throughout some open ball $B(x, r)$. Prove that f is continuous at x. Hint: recall that If f is a function such that its partials exists in $B(x, r)$ and $h \in B(0, r)$, there there are points $p^{(1)}, \ldots, p^{(n)}$ in $B(x, r)$ such that

$$f(x + h) - f(x) = f_1(p^{(1)})h_1 + \cdots + f_n(p^{(n)})h_n.$$

2. Suppose that the function f has a relative extreme point at $x \in D^o \subset \mathbb{R}^n$ and each of its partial derivative exist in D^o. Prove that $f_i(x) = 0$ for all i and $D_uf(x) = 0$ for all unit vectors u.

3. Suppose S is a nonempty open set. Prove that $A^-(S) > 0$.

4. Let R be a rectangle and \mathcal{N} be a net on R; find $\beta[\mathcal{N}]$.

5. Suppose that f is integrable over the bounded set S and $k \in \mathbb{R}$. Prove that

$$\int\int_S kf(x, y) \, dA = k \int\int_S f(x, y) \, dA.$$