Math 248, Methods of Proof, Fall 2013
Axioms of the Real Numbers

The Real Numbers consists of a set \(\mathbb{R} \) along with two functions \(+ : \mathbb{R} \times \mathbb{R} \to \mathbb{R} \) and \(\cdot : \mathbb{R} \times \mathbb{R} \to \mathbb{R} \) and a relation \(\leq \) on \(\mathbb{R} \) such that:

(A1) for all \(a, b, c \in \mathbb{R} \), \(+(+(a, b), c) = +(a, +(b, c)) \), or \((a + b) + c = a + (b + c) \)

(A2) for all \(a, b \in \mathbb{R} \), \(a + b = b + a \)

(A3) there is an element \(0 \in \mathbb{R} \) such that \(0 + b = b \) for all \(b \in \mathbb{R} \); we call this element an additive identity (or a +-identity).

(A4) for each \(a \in \mathbb{R} \), there is a \(b \in \mathbb{R} \) such that \(a + b = 0 \); we refer to to this element as an additive inverse of \(a \) (or a +-inverse of \(a \)).

(A5) for all \(a, b, c \in \mathbb{R} \), \(\cdot(\cdot(a, b), c) = \cdot(a, \cdot(b, c)) \), or \((a \cdot b) \cdot c = a \cdot (b \cdot c) \), or \((ab)c = a(bc) \)

(A6) for all \(a, b \in \mathbb{R} \), \(ab = ba \)

(A7) there is \(1 \in \mathbb{R} \) such that \(1 \cdot b = b \) for all \(b \in \mathbb{R} \); we call this element a multiplicative inverse of \(b \) (or a \(-\)-inverse of \(b \))

(A8) for all \(a \in \mathbb{R} \) such that \(a \neq 0 \), there is \(b \in \mathbb{R} \) such that \(ab = 1 \)

(A9) for all \(a, b, c \in \mathbb{R} \), \(a(b + c) = ab + ac \)

(A10) \(1 \neq 0 \)

(A11) Some more axioms regarding \(\leq \).