1. Do problems 3.3: 9a, 13, 20

2. Let \(n \in \mathbb{N}_{>0} \) be given. In class we proved that, if \(a, b, c \in \mathbb{Z} \) such that \(a \cdot b \equiv a \cdot c \pmod{n} \) and \(\gcd(a, n) = 1 \) then \(b \equiv c \pmod{n} \). Actually, more is true. Suppose now that \(n > 1 \) and for all \(b, c \in \mathbb{Z} \) if \(a \cdot b \equiv a \cdot c \pmod{n} \) then \(b \equiv c \pmod{n} \). Prove that \(\gcd(a, n) = 1 \). Hint: Suppose not. Then there is \(d > 1 \) and \(s, t \in \mathbb{Z} \) such that \(ds = a \) and \(dt = n \). Consider \(a \cdot (t) \equiv a \cdot (2t) \pmod{n} \).

3. Let \(a \in \mathbb{Z} \) and \(n \in \mathbb{N}_{>0} \) such that \(a \not\equiv 0 \pmod{n} \). Prove that there is \(b \not\equiv 0 \pmod{n} \) such that \(ab \equiv 0 \pmod{n} \) if and only if \(\gcd(a, n) \neq 1 \).

4. Do problems 4.2: 1, 3, 10, 16, 17

 The grader will carefully consider 4.2.3 and 4.2.17.