1. (p.85 #23) \mathbb{Z}_2

2. (p.85 #24) V (the Klein 4-group)

3. (p.85 #26) \mathbb{Z}_2

4. $h(1)(n) = 1+n$, so $h(1)(1) = 2$, $h(1)(2) = 3$, $h(1)(3) = 4$
 $h(1)(4) = 0$ and $h(1)(0) = 1$

 $h(3)(n) = 3+n$, so $h(3)(0) = 3$, $h(3)(1) = 4$, $h(3)(2) = 0$
 $h(3)(3) = 1$, $h(3)(4) = 2$

5. (a) Since $ea = a = ae$, $e \in C(e)$ and so $C(e) \neq \emptyset$.
 Now let $g, h \in C(e)$. Then $(gh)a = g(ha) = g(ae)$
 $= (ga)e$
 $= (ag)e$
 $= e(ge)$

 And so $gh \in C(e)$

 Also note that $g^{-1}a = g^{-1}a(gg^{-1})$
 $= g^{-1}agg^{-1}$
 $= g^{-1}(ga)g^{-1}$
 $= (g^{-1}g)ag^{-1} = ag^{-1}$

 and so $g^{-1} \in C(e)$.
 By the subgroup test, $C(e) < G$.

6. (p. 96 #12) \(V = (1, 3, 4, 7, 8, 6, 5, 2) \)

7. (p. 96 #21) Let \(H = H \cap A_n \). If \(H = H_e \), then every element of \(H \) is even. Otherwise, \(H \) is a proper subgroup of \(H \). In this case, pick \(t \in H \setminus H_e \).

Claim: \(H \setminus H_e = \{ H_e, t \} \)

Proof: Let \(v \in H \). If \(v \notin H_e \), then \(vH_e = H_e \). It is odd, which implies that \(v^{-1} \notin H_e \).

It follows that \(vH_e = H_e \).

Claim: Done.

Since \(H = H_e \cup H \), \(H_e \cap H = \emptyset \) and \(|H_e| = |H| \)

We conclude that \(|H_e| = 1 \cdot |H_e| = |H| \)

8. (p. 96 #31) For each \(v \in S_n \), let \(M_v = \{ v(a) \mid v(a) \neq a \} \).

Then, \(H \) consists of all \(v \in S_n \) such that \(|M_v| < \infty \).

First note that \(M_v = \{ \} \) (where \(i \) denotes the identity permutation) and so \(i \in H \).

Let \(\sigma, \tau \in H \). If \(\sigma \tau(a) \neq a \), then \(a \in M_\sigma \cup M_\tau \)

(\(a \) must be moved by \(\sigma \) or \(\tau \) or both) and so \(M_\sigma \cap M_\tau \neq \emptyset \).

Since \(|M_\sigma \cup M_\tau| < \infty \) we conclude that \(|M_\sigma| < \infty \) and \(|M_\tau| < \infty \).

Also, \(\sigma^{-1}(a) = a \) if and only if \(\sigma^{-1}(a) \neq a \), which implies that \(M_{\sigma^{-1}} = M_\sigma \) is finite. \(\therefore \sigma^{-1} \in H \).

By the subgroup test, \(H \leq S_n \).
9. \((p, 101 + 6) \quad H = \mathbb{Z}(p, \mu_2) \quad \mathbb{C}, \quad H = \mathbb{Z}(p, \delta_2) \),
\(C_2 = \mathbb{Z}(p, \mu_2) \quad \mathbb{C}^2 \), \(C_3 = \mathbb{Z}(p, \delta_2) \)

is a complete list of the Sylow classes of \(D_{4} / H \).

10. By direct computation, \(|\mu| = 4 \) and so
\((S_4, <\mu>) = \frac{6!}{4} = 6 \cdot 5 \cdot 3 \cdot 2 \cdot 1 = 180 \)

11. Let \(x \in gH \). Then \(x = gh \) for some \(h \in H \).
Now \(x^{-1} = gh^{-1} \in H \) and so \(xg^{-1} = h \) for some \(h \in H \). It follows that \(x = hg \in Hg \).

\[x \in gH \] The proof that \(Hg \subseteq gH \) is similar.

12. (a) Since \((1 + 2i)^{-1} (2 + i) = \frac{4 + 3i}{5} \) and
\[1 \frac{4 + 3i}{5} = 1 \] are candidates that \((1 + 2i)u = (2 + i)u \).

(b) Since \(\frac{4 + 3i}{5} \) is \((1 + 2i)u \neq 3u \).

(c) Since \(|a^{-1}b| = 1 \) if and only if \(|ab| = 16 \) it follows that all \(6u \) if and only if \(|a| = 16 \). Thus, the set \(6u \) is a circle in the complex plane consisting of all complex numbers of modulus \(16 \).

13. Write \(|g| = m \). Since \(m \mid n \), there exists \(t \in \mathbb{Z} \) such that \(n = tm \). Now \(g^m = g^{tm} = (g^t)^m = e^t = e \).
7 (p. 96 #28) Alternate proof

Let $H_0 = H_0 \cap A_n$. If $H \subseteq H_0$, then every element of H is even. Otherwise, choose $x \in H - H_0$. Since x is odd, every element of $H_0 = \{ x \in H \mid x \in H_0 \}$ is also odd.

Now observe that the mapping $f : H_0 \to H_0$ given by $f(x) = x^2$ is a bijection and so $|H_0| = |H_0|$. Claim: $H - H_0 = H_0$.

Proof: The inclusion $H_0 \subseteq H - H_0$ is obvious.

Let $x \in H - H_0$ and note that $x^2 \in H_0$.

It follows that $x = (x^2)^{1/2} = (x^{-2})^2 \in H_0$

and so $H - H_0 \subseteq H_0$.

Claim Done.

Now we have $H = H_0 \cup H_0$, where $H_0 \cap H_0 = \emptyset$ and $|H_0| = |H_0|$ and so $|H_0| = |H|/2$.

That is H consists of the same number of even and odd permutations.