AUTOMORPHISMS OF RIGHT-ANGLED COXETER GROUPS

Mauricio Gutierrez and Anton Kaul

October 11, 2007

Abstract

If \((W,S)\) is a right-angled Coxeter group, then \(\text{Aut}(W)\) is a semidirect product of the group \(\text{Aut}^\circ(W)\) of symmetric automorphisms by the automorphism group of a certain groupoid. We show that, under mild conditions, \(\text{Aut}^\circ(W)\) is a semidirect product of \(\text{Inn}(W)\) by the quotient \(\text{Out}^\circ(W) = \text{Aut}^\circ(W)/\text{Inn}(W)\). We also give sufficient conditions for the compatibility of the two semidirect products. When this occurs there is an induced splitting of the sequence

\[
1 \rightarrow \text{Inn}(W) \rightarrow \text{Aut}(W) \rightarrow \text{Out}(W) \rightarrow 1
\]

and consequently, all group extensions

\[
1 \rightarrow W \rightarrow G \rightarrow Q \rightarrow 1
\]

are trivial.

1 Introduction

A Coxeter group \(W\) is determined by its diagram \(\Gamma\). It is known that in certain cases, \(W\) determines \(\Gamma\) as well (see e. g., [4], [10]). This is the case for right-angled Coxeter groups [11], where the only relations are \(s^2 = 1\) for all generators \(s\) and \(st = ts\) for some pairs of generators \(s\) and \(t\). For right-angled Coxeter groups it is convenient to consider the Coxeter diagram (rather than the classical Coxeter graph): the presence of an edge with endpoints \(s\) and \(t\) means that \(s\) and \(t\) commute in \(W\).

The properties of a right-angled Coxeter group \(W\) depend almost exclusively on the combinatorics of the diagram \(\Gamma\). We use this to prove our main result: Under certain conditions on \(\Gamma\), the sequence

\[
1 \rightarrow \text{Inn}(W) \rightarrow \text{Aut}(W) \rightarrow \text{Out}(W) \rightarrow 1
\]

splits and so all extensions

\[
1 \rightarrow W \rightarrow G \rightarrow Q \rightarrow 1
\]
are trivial (cf. [3]).

Clearly (1) does not always split. For example, \mathbb{Z}_2 is a right-angled Coxeter group and

$$0 \rightarrow \mathbb{Z}_2 \rightarrow \mathbb{Z}_4 \rightarrow \mathbb{Z}_2 \rightarrow 0$$

is a non-trivial extension. On the other hand, if W has no center, then finding non-trivial extensions of W is surprisingly difficult. Whether (1) splits for all W with trivial center is currently an open question. However, in [12] J. Tits found a split exact sequence

$$1 \rightarrow \text{Aut}^\circ(W) \rightarrow \text{Aut}(W) \rightarrow \text{Aut}(\mathfrak{F}(\Gamma)) \rightarrow 1 \ (2)$$

where $\mathfrak{F}(\Gamma)$ is a certain groupoid (described in Section 3 below). The group $\text{Aut}^\circ(W)$ has been studied extensively in [9] and [12] and is called the group of symmetric automorphisms of W. Motivated by the results of Tits regarding sequence (2), we approach the problem of whether (1) splits by considering the following two questions:

(a) Does the sequence

$$1 \rightarrow \text{Inn}(W) \rightarrow \text{Aut}^\circ(W) \rightarrow \text{Aut}^\circ(W)/\text{Inn}(W) \rightarrow 1 \ (3)$$

split?

(b) Are the splittings of (2) and (3) compatible?

A positive answer to both (a) and (b) implies that (1) is a split extension.

For the splitting of (3) we require a maximal complete subgraph Ω of Γ to satisfy certain technical conditions. For the splitting of (1), the action of $\text{Aut}(\mathfrak{F}(\Gamma))$ on $\text{Aut}^\circ(W)$ is compatible if Γ is not “too symmetrical.” That is, when Ω is stabilized by $\text{Aut}(\mathfrak{F}(\Gamma))$.

It was recently shown in [5] that (3) always splits. However, the splitting found there is not, in general, compatible with (2).

2 Right-angled Coxeter groups

Coxeter groups are typically defined by presentations, and there are various conventions for representing such presentations diagrammatically. In this section we review some definitions and important properties, focusing exclusively on the right-angled case. See [1] or [6] for a comprehensive treatment.

If X is any set, let $P_2(X)$ denote the set of subsets of X with cardinality 2.

Definition 2.1 Given a finite set S and $E \subseteq P_2(S)$, let $\Gamma = (S, E)$ denote the undirected graph with vertex set S and edge set E (note that Γ does not have loops or parallel edges). As such graphs are often used to represent right-angled Coxeter groups, Γ is called a *Coxeter diagram.*
Definition 2.2 Given $T \subseteq S$, set $E_T = E \cap P_2(T)$. The graph $\Gamma_T = (T, E_T)$ is the subgraph of Γ spanned by T. A complete subgraph is maximal if it is not properly contained in any complete subgraph of Γ.

Definition 2.3 The presentation

$$P(\Gamma) = \langle S \mid s^2, (tu)^2; s \in S, \{t, u\} \in E \rangle$$

is the Coxeter presentation defined by Γ.

Definition 2.4 A group W is a right-angled Coxeter group if it has a presentation $P(\Gamma)$ defined by some Coxeter diagram Γ. In this case we write $W = W(\Gamma)$ and call W the right-angled Coxeter group defined by Γ. The pair (W, S) is a right-angled Coxeter system.

Remark 2.5 The Coxeter diagram is not the same as the traditional Dynkin diagram. Indeed, as graphs, the Coxeter and Dynkin diagrams are complementary.

Clearly, each Coxeter diagram defines a unique right-angled Coxeter group. On the other hand, to recover the diagram from a group one must first choose a particular Coxeter presentation. It is natural to wonder whether non-isomorphic diagrams might define isomorphic groups. The relationship between right-angled Coxeter groups and their diagrams is clarified by the following result.

Theorem 2.6 (D. Radcliffe [11]) If (W, S) and (W, S') are right-angled Coxeter systems for W, then there is an automorphism $\rho : W \to W$ such that $\rho(S) = S'$.

Definition 2.7 A subgroup of W generated by a subset of S is called a special subgroup. If $T \subseteq S$, it is customary to write W_T for the subgroup generated by T. Finite special subgroups are called spherical subgroups. A subgroup of W is parabolic if it is conjugate to a special subgroup.

We conclude this section with statements of some of the remarkable properties enjoyed by special subgroups.

Theorem 2.8 If $A, B \subseteq S$, then $W_A \cap W_B = W_{A \cap B}$.

Theorem 2.9 If $T \subseteq S$, then W_T is the right-angled Coxeter group defined by Γ_T.

Corollary 2.10 The following are equivalent:

(a) W_T is spherical.

(b) W_T is an elementary abelian 2-group of rank $|T|$.

(c) Γ_T is complete.
3 Automorphisms of Right-Angled Coxeter Groups

For the remainder of this article, let $W = W(\Gamma)$ be the right-angled Coxeter group defined by the connected Coxeter diagram $\Gamma = (S, E)$. It is easily verified that, under the operation of symmetric difference, the set

$$\mathfrak{F}(\Gamma) = \{ T \subseteq S \mid W_T \text{ is finite} \}$$

is a commutative groupoid with identity \emptyset.

In [12], Tits uses the group of automorphisms of $\mathfrak{F}(\Gamma)$ to exhibit $\text{Aut}(W)$ as a semidirect product. We sketch the construction. Let $\sigma \in \text{Aut}(W)$. It is well-known that every maximal finite subgroup of W is parabolic (see e.g., [7, Lemma 3.2.1]. Consequently, every finite subgroup of W is conjugate into a spherical subgroup. It follows that, for each $T \in \mathfrak{F}(\Gamma)$, there is a unique minimal $\overline{T} \in \mathfrak{F}(\Gamma)$ such that $\sigma(W_T)$ is conjugate into $W_{\overline{T}}$. The map

$$q : \text{Aut}(W) \to \text{Aut}(\mathfrak{F}(\Gamma)) \quad (4)$$

given by $q(\sigma)(T) = \overline{T}$ is an epimorphism.

Definition 3.1 Let $\text{Aut}^\circ(W)$ be the kernel of q. Elements of $\text{Aut}^\circ(W)$ are called symmetric automorphisms of W.

Given $\alpha \in \text{Aut}(\mathfrak{F}(\Gamma))$, consider $\hat{\alpha} \in \text{Aut}(W)$ defined by

$$\hat{\alpha}(s) = \prod_{t \in \alpha(s)} t \quad (5)$$

for all $s \in S$. A main result of [12] is

Theorem 3.2 The mapping $\text{Aut}(\mathfrak{F}(\Gamma)) \to \text{Aut}(W)$ given by $\alpha \mapsto \hat{\alpha}$ is a splitting of the sequence

$$1 \to \text{Aut}^\circ(W) \to \text{Aut}(W) \to \text{Aut}(\mathfrak{F}(\Gamma)) \to 1.$$
extends to a unique involution $\sigma_{sK} \in Aut^\circ(W)$. The following is easily deduced from [9].

Theorem 3.3 For each $s \in S$, let $K_1^s, \ldots, K_{m_s}^s$ be the vertex sets of the components of Γ_s. Then $Aut^\circ(W)$ is generated by the set $\{\sigma_{sK_i^s} \mid s \in S, 1 \leq i \leq m_s\}$.

Remark 3.4 In [9], M"uhlherr gives a complete presentation for $Aut^\circ(W)$ based on a slightly different set of generators.

4 Symmetric Automorphisms

The subsets of S that generate maximal spherical subgroups of W play a key role in the subsequent development. As such, we define

$$\mathcal{M}(\Gamma) = \{T \subseteq S \mid W_T \text{ is a maximal finite subgroup}\}.$$

Note that $\mathcal{M}(\Gamma)$ is in one-to-one correspondence with the family of maximal complete subgraphs of Γ. The global behavior of a symmetric automorphism is governed by the following observation: If $\phi \in Aut^\circ(W)$ and $T \in \mathcal{M}(\Gamma)$, then there exists an element $a_T = a_T(\phi) \in W$ such that $\phi(x) = a_T x a_T^{-1}$ for all $x \in W_T$.

Remark 4.1 When $T \in \mathcal{M}(\Gamma)$, W_T is its own centralizer. Thus, the element a_T above is determined up to right multiplication by any member of W_T (i. e., up to choice of representative for the coset $a_T W_T$).

If $T, U \in \mathcal{M}(\Gamma)$ and $T \cap U \neq \emptyset$, then $a_T x a_T^{-1} = a_U x a_U^{-1}$ for all $x \in W_T \cap W_U = W_{T \cap U}$. Consequently, $a_T^{-1} a_U$ lies in the centralizer of $W_{T \cap U}$.

Definition 4.2 With ϕ, T, U as above, let $\gamma_{TU} = \gamma_{TU}(\phi) = a_T^{-1} a_U$. A representative of the double coset $W_T \gamma_{TU} W_U$ is called a ϕ-transition from W_T to W_U.

Remark 4.3 If $T, U, V \in \mathcal{M}(\Gamma)$ have pairwise nonempty intersection, then $\gamma_{TT} = 1$, $\gamma_{UV} = (\gamma_{UV})^{-1}$, and $\gamma_{TU} \gamma_{UV} = \gamma_{TV}$. As the terminology suggests, the transitions are in some sense a group-theoretic analogue of the change-of-coordinate maps on a manifold.

For the remainder of this article we fix an element $Z \in \mathcal{M}(\Gamma)$. For much of what follows, Z may be chosen arbitrarily; in Section 5 we show that a preferred choice may exist.

Given $x \in W$ let ψ_x be the inner automorphism of W given by $w \mapsto x w x^{-1}$ for all $w \in W$. Restricting our attention to Z we define

$$Inn(Z) = \{\psi_s \in Inn(W) \mid s \in W_Z\}$$

and
\[\text{Fix}^o(Z) = \{ \phi \in \text{Aut}^o(W) \mid \phi(x) = x \text{ for all } x \in Z \}. \]

In other words, \(\text{Fix}^o(Z) \) is the pointwise stabilizer of \(W_Z \) under the action of \(\text{Aut}^o(W) \) on \(W \). Observe that, since the subgraph \(\Gamma_Z \) spanned by \(Z \) is complete, \(\text{Inn}(Z) \) is abelian.

Clearly, \(\text{Inn}(Z) \) is a subgroup of \(\text{Fix}^o(Z) \). Let \(\pi \) be the restriction to \(\text{Fix}^o(Z) \) of the natural map \(\text{Aut}^o(W) \to \text{Out}^o(W) \) and choose a class \([\phi] \in \text{Out}^o(W)\) with representative \(\phi \in \text{Aut}^o(W) \). If \(f \) is the restriction of \(\phi \) to \(W_Z \), then \(f(x) = a_x x a_x^{-1} \) for all \(x \in W_Z \). Since \([f^{-1}\phi] = [\phi] \) and \(f^{-1}\phi \in \text{Fix}^o(Z) \), it follows that \(\pi \) is onto. We have established the following.

Theorem 4.4 The sequence
\[
0 \to \text{Inn}(Z) \xrightarrow{i} \text{Fix}^o(Z) \xrightarrow{\pi} \text{Out}^o(W) \to 1.
\]
(6)

is a central extension.

In Section 5 we construct a retraction of the mapping \(\text{Inn}(Z) \xrightarrow{i} \text{Fix}^o(Z) \).

We now describe the key ingredient used in this construction. For each \(T \in \mathfrak{F}(\Gamma) \), let
\[
C(T) = \bigcap_{v \in T} v^*.
\]
It follows at once that \(W_{C(T \cap Z)} \) is the centralizer of \(W_{T \cap Z} \) in \(W \) (cf. [12], p. 350). The function
\[
\pi_T : C(T \cap Z) \to Z - T
\]
given by
\[
\pi_T(s) = \begin{cases}
1 & s \notin Z - T \\
0 & s \in Z - T
\end{cases}
\]
extends uniquely to a retraction \(W_{C(T \cap Z)} \to W_{Z - T} \), which we also denote by \(\pi_T \).

5 Splittings

As in Section 4, we assume that \(Z \) is a fixed element of \(\mathfrak{M}(\Gamma) \).

Definition 5.1 We say that \(Z \) satisfies condition C if there exist elements \(T_1, T_2, \ldots, T_n \in \mathfrak{M}(\Gamma) - \{Z\} \) such that the following conditions hold.

(C1) \(T_i \cap Z \neq \emptyset \) for each \(1 \leq i \leq n \).

(C2) For each \(v \in Z \), the cardinality of the set \(\{i \mid v \notin T_i\} \) is odd.

If \(\Gamma \) contains a maximal complete subgraph \(\Omega \) whose vertex set \(Z \) satisfies condition C, then we say that \(\Gamma \) has condition C. When \(\Gamma \) has condition C, then for each \(1 \leq i \leq n \) above let \(\Delta_i \) denote the maximal complete subgraph of \(\Gamma \) spanned by \(T_i \).
Note that, since Γ is connected, when $n = 0$ our hypotheses imply that Γ is complete. In this case W is abelian and the results below are trivial. Thus, we may assume that n is a positive integer.

Example 5.2 We illustrate condition C with some examples.

(a) If Γ contains a maximal complete subgraph Ω with an even number of vertices each of which meets exactly one other complete subgraph of Γ, then Γ has condition C. For example, any Coxeter diagram Γ that contains Figure 2 (a) as a subgraph (where Ω, Δ_1 and Δ_2 are maximal complete subgraphs of Γ) has condition C.

(b) Suppose n is odd and Γ has maximal complete subgraphs Ω, Δ_1, ..., Δ_n. If the vertex set of Ω is $Z = \{v_1, ..., v_n\}$ and the vertex set of Δ_i contains every element of Z but v_i, then Γ has condition C. For example any Coxeter diagram Γ that contains Figure 2 (b) as a subgraph (where Ω, Δ_1, Δ_2, and Δ_3 are maximal complete subgraphs of Γ) has condition C.

\[\begin{array}{c}
\Delta_1 \\
\Omega \\
\Delta_2
\end{array} \quad \begin{array}{c}
\Delta_1 \\
\Omega \\
\Delta_2 \\
\Delta_3
\end{array} \]

(a) \hspace{2cm} (b)

Figure 2

Remark 5.3 In [12], Tits says that a right-angled Coxeter group with Coxeter diagram Γ has “propriété I” if the complementary graph Γ^c has no triangles. In this case the inclusion $\text{Inn}(W) \to \text{Aut}^c(W)$ is an isomorphism. If Γ has condition C, then the union $\Delta_1 \cup \cdots \cup \Delta_n \cup \Omega$ defines a right-angled Coxeter group that has condition I. Thus, condition C is in some sense a “local” version of Tits’ propriété I.

Assume Γ satisfies condition C and let $\phi \in \text{Fix}^\phi(Z)$. In this case, we can choose $a_Z(\phi) = 1$. Then, for each $T \in \mathfrak{M}(\Gamma)$ with $T \cap Z \neq \emptyset$, the transition $\gamma_{ZT}(\phi) = a_T(\phi)$ is an element of the coset a_TW_T. It must be emphasized that no left multiplication by elements of W_Z is permitted.

Theorem 5.4 If Γ has condition C, then the sequence

\[1 \to \text{Inn}(W) \to \text{Aut}^c(W) \to \text{Out}^c(W) \to 1 \]

splits.

Proof: Let $Z, T_1, \ldots, T_n \in \mathfrak{M}(\Gamma)$ satisfying (C1) and (C2) of Definition 5.1. For each $\phi \in \text{Fix}^\phi(Z)$, define an inner automorphism $r(\phi) = \psi_x$ where

\[x = \prod_{i=1}^{n} \pi_{T_i}(\gamma_{ZT_i}(\phi)) = \prod_{i=1}^{n} \pi_{T_i}(a_{T_i}(\phi)) \] (7)
(recall that ψ_v is the inner automorphism that conjugates each element of W by v). By definition, $\pi_T(\gamma_{ZT_i}(\phi)) = \pi_T(a_{T_i}(\phi))$ lies in $W_{Z-T_i} \subseteq W_Z$. Consequently, the terms in the product (7) commute and so the mapping

$$r : \text{Fix}^o(Z) \longrightarrow \text{Inn}(Z)$$

is well-defined. To see that r is a homomorphism, choose $\phi, \kappa \in \text{Fix}^o(Z)$. Then, for each T_i we have

$$a_{T_i}(\phi\kappa) = \phi(a_{T_i}(\kappa)) \cdot a_{T_i}(\phi).$$ \hfill (8)

Since $a_{T_i}(\kappa)$ lies in the centralizer of $W_{T_i \cap Z}$, any reduced expression for $a_{T_i}(\kappa)$ is of the form $a_{T_i}(\kappa) = v_1 \cdots v_m$ where each $v_j \in C(T_i \cap Z)$. Observe that

$$\pi_{T_i}(\phi(v_j)) = \begin{cases} v_j & \text{if } v \in Z - T_i \\ 1 & \text{if } v \notin Z - T_i \end{cases}$$

and so $\pi_{T_i}(\phi(a_{T_i}(\kappa))) = \pi_{T_i}(a_{T_i}(\kappa))$. It follows from (8) that

$$\pi_{T_i}(a_{T_i}(\phi\kappa)) = \pi_{T_i}(a_{T_i}(\kappa)) \cdot \pi_{T_i}(a_{T_i}(\phi)).$$

Now, using the fact that the image of each π_{T_i} lies in the abelian subgroup W_Z, we have that $r(\phi\kappa) = r(\phi)r(\kappa)$.

To see that r is a retraction, let $v \in Z$ and let k be number of T_i’s that do not contain v. If ψ_v is the inner automorphism of W that conjugates by v, then $a_{T_i}(\psi_v) = v$ for every $1 \leq i \leq n$. From (7) we have that $r(\psi_v)$ conjugates every element by

$$\prod_{i=1}^n \pi_{T_i}(a_{T_i}(\psi_v)) = \prod_{i=1}^n \pi_{T_i}(v) = v^k.$$

Since k is odd, $v^k = v$ and so $r(\psi_v) = \psi_v$.

Since r is a retraction and the sequence (6) is central, the mapping

$$\text{Fix}^o(Z) \longrightarrow \text{Inn}(Z) \times \ker(r)$$

defined by

$$\phi \mapsto (r(\phi), r(\phi)^{-1}\phi)$$

is an isomorphism. Consequently, $j = \pi|_{\ker(r)}$ is an isomorphism from $\ker(r)$ onto $\text{Out}^o(W)$. A section $\text{Out}^o(W) \longrightarrow \text{Aut}^o(W)$ is given by the composition $h \circ j^{-1}$, where $h : \ker(r) \longrightarrow \text{Aut}^o(W)$ is the inclusion

$$\ker(r) \subseteq \text{Fix}^o(Z) \subseteq \text{Aut}^o(W).$$

\hfill \Box

As noted in the introduction, to obtain a splitting of sequence (1), Γ must satisfy an “asymmetry” condition. This is obtained by imposing a restriction on the action of $\text{Aut}(\mathcal{F}(\Gamma))$, and motivates the following definition.
Definition 5.5 Let $\alpha \in Aut(\mathfrak{F}(\Gamma))$ and $T \in \mathfrak{M}(\Gamma)$. We say that α fixes T if $\alpha(t) = \{t\}$ for every $t \in T$.

Note that if α fixes T, then $\alpha(T') = T'$ for every $T' \subseteq T$.

Theorem 5.6 If Γ has condition C and each $\alpha \in Aut(\mathfrak{F}(\Gamma))$ fixes Z, then

$$1 \rightarrow Inn(W) \rightarrow Aut(W) \rightarrow Out(W) \rightarrow 1$$

splits.

Proof: Let $Fix(Z) = \{\beta \in Aut(W) | \beta(z) = z \text{ for all } z \in Z\}$. Since each $\alpha \in Aut(\mathfrak{F}(\Gamma))$ fixes Z, it follows that $\hat{\alpha}$ (as defined in (5) above) lies in $Fix(Z)$ and the mapping $\alpha \mapsto \hat{\alpha}$ is a splitting of the sequence

$$1 \rightarrow Fix^o(Z) \rightarrow Fix(Z) \xrightarrow{\overline{q}} Aut(\mathfrak{F}(\Gamma)) \rightarrow 1 \quad (9)$$

(where \overline{q} is the restriction of the mapping q given in (4) above). As in the proof of Theorem 4.4, the projection $Fix(Z) \rightarrow Out(W)$ is onto and its kernel is

$$Inn(Z) \cap Fix(Z) = Inn(C(Z)).$$

But $Z \in \mathfrak{M}(\Gamma)$ and so $C(Z) = Z$. Thus, we have an extension

$$0 \rightarrow Inn(Z) \rightarrow Fix(Z) \rightarrow Out(W) \rightarrow 1$$

which is easily seen to be central.

If $\phi \in Fix^o(Z)$ and $\alpha \in Aut(\mathfrak{F}(\Gamma))$, then $\hat{\alpha}\phi\hat{\alpha}^{-1} \in Fix^o(Z)$ and, because $Inn(Z)$ is abelian,

$$r(\hat{\alpha}\phi\hat{\alpha}^{-1}) = r(\phi) \quad (10)$$

Since (9) splits, every element $f \in Fix(Z)$ has a unique expression $f = \phi \cdot \hat{\alpha}$, where $\phi \in Fix^o(Z)$ and $\alpha \in Aut(\mathfrak{F}(\Gamma))$. Consequently, we may define

$$r' : Fix(Z) \rightarrow Inn(Z)$$

by $r'(f) = r(\phi)$ for all $f \in Fix(Z)$. If $g \in Fix(Z)$ is written as $\psi \cdot \hat{\beta}$ then, by (10),

$$r'(fg) = r'(\phi \psi \hat{\alpha}^{-1} \hat{\beta})$$

$$= r(\phi \psi \hat{\alpha}^{-1})$$

$$= r(\phi) r(\hat{\alpha} \psi \hat{\alpha}^{-1})$$

$$= r(\phi) r(\psi)$$

$$= r'(f) r'(g).$$

Thus, r' is a homomorphism and is easily verified to be a retraction. The proof is completed in a manner similar to the conclusion of the proof of Theorem 5.4, replacing $Out^o(W)$ with $Out(W)$, etc.

As an immediate consequence we obtain the following corollary (cf. [3]).
Corollary 5.7 If W is a right-angled Coxeter group satisfying the hypotheses of Theorem 5.6, then all extensions

$$1 \to W \to G \to Q \to 1$$

are trivial.

REFERENCES

Department of Mathematics
Tufts University
Medford, MA 02155
E-mail address: mauricio.gutierrez@tufts.edu

Mathematics Department
California Polytechnic State University
San Luis Obispo, CA 93407
E-mail address: akaul@calpoly.edu