Root Locus Rules

Number of Branches
There is one branch for each pole of the open-loop transfer function \(KG(s)H(s) \).

Starting Points
The branches of the root locus begin at the poles of \(KG(s)H(s) \).

Ends of Branches
The branches of the root locus end at the zeros of \(KG(s)H(s) \).
These zeros may be finite or infinite.

On the Real Axis
The root locus exists on the real axis at every point which has an odd number of poles and/or zeros on the axis to its right.

Symmetry
The root locus is always symmetrical with respect to the real \((\sigma, \text{horizontal})\) axis.

Asymptotes
The number of asymptotes is \((\#p - \#z)\), the number of poles minus the number of zeros.

Asymptote Angles
The asymptote angles are found by
\[
\theta_A = \frac{\pi(1 + 2k)}{\#p - \#z}, \quad k = 0, 1, 2, \ldots
\]

Asymptote Center
All the asymptotes radiate from a center point at
\[
\sigma_A = \frac{\Sigma(\sigma_p) - \Sigma(\sigma_z)}{\#p - \#z}
\]
where each \(\sigma_p \) is the real part of the coordinate of a pole and each \(\sigma_z \) is the real coordinate of a zero.

Breakaway/Reentry
Breakaway occurs at a local maximum of \(K \), and reentry occurs at a local minimum of \(K \). These points can be determined by solving
\[
\frac{dK}{d\sigma} = 0
\]
where \(\sigma \) is a real value of \(s \) along the real axis.

Finding the Gain
The gain at any point \(s_o \) on the root locus may be found by the following formula:
\[
K = \frac{1}{|G(s_o)H(s_o)|}
\]