1) 3) $E_1 + W_{1 \rightarrow 2} = E_2$

2) $E_1 = U_y = mg \cdot x \cdot \sin \alpha$

3) $E_2 = T_x = \frac{1}{2} m \cdot x_5^2 + \frac{1}{2} \Theta \cdot \omega^2$

2) $W_{1 \rightarrow 2} = - F_f \cdot x$

2) $F_f = \mu \cdot N$

2) $N = mg \cdot \cos \alpha$

3) $mg \cdot x \cdot \sin \alpha - \mu \cdot mg \cdot \cos \alpha \cdot x = \frac{1}{2} m \cdot x_5^2 + \frac{1}{2} \Theta \cdot \omega^2$

$$x_5 = \sqrt{\frac{2}{m} \left[ mg \cdot x \cdot (\sin \alpha - \mu \cdot \cos \alpha) - \frac{1}{2} \Theta \cdot \omega^2 \right]}$$

Bei Rutschen gibt es keine kinematische Beziehung zwischen $x_5$ und $\omega$. Sie müssen das nicht explizit ausdrücken, aber, wenn sie $x = \omega r$ behaupten, das ist falsch. Also diese Behauptung nicht zu machen = 3
2) (a) \( D = 0 \), keinen \( \Phi \)-Term

(b) Ja, die treibende Kraft ist ein Sinus.

(c) \( \omega = 64 \text{ Rad/Sek} \)

(d) \( \omega_0 = \sqrt{\frac{4}{16}} = \frac{1}{2} \text{ Rad/Sek} \)

(e) \( \omega_R = \frac{1}{2} \text{ Rad/Sek} \), Schwingungsfrequenz ist 64 Rad/Sek. Also \( \omega_{\text{Schw}} > \omega_R \).

(f) \( D = 0,5 \)

\[ \ddot{\psi} + 2D\omega_0 \dot{\psi} + \omega_0^2 \psi = \]

\[ \ddot{\psi} + 2(0,5) \frac{1}{2} \dot{\psi} + \frac{1}{4} \psi = \frac{1}{16} 32 \sin 64t \]

oder

\[ 16 \ddot{\psi} + 8 \dot{\psi} + 4 \psi = 32 \sin 64t \]

17 Pts

Gesamt 36 Pts